

The Simons Observatory

and a new framework to constrain cosmic birefringence

Baptiste Jost (APC, CPB) Supervisors : Radek Stompor, Josquin Errard

Construction of nominal project is funded privately and has already begun. >200 collaborators

Member Institutions

10 Countries 40+ Institutions 306 Researchers

Europe

- APC France
- IJClab France
- Cambridge University
- Cardiff University
- Imperial College
- Manchester University
- Oxford University
- SISSA Italy
- University of Sussex
- Stockholm University

Middle East

Tel Aviv

United States

- Arizona State University
- Carnegie Mellon University
- Center for Computational Astrophysics
- Cornell University
- Florida State
- Haverford College
- Lawrence Berkeley National Laboratory
- NASA/GSFC
- NIST
- Princeton University
- Rutgers University
- Stanford University/SLAC
- Stony Brook
- University of California Berkeley
- University of California San Diego
- University of Michigan
- University of Pennsylvania
- University of Pittsburgh
- University of Southern California
- West Chester University
- Yale University

Australia

• Melbourne

Canada

- CITA/Toronto
- Dunlap Institute/Toronto
- McGill University
- Perimeter Institute
- University of British Columbia

Japan

- KEK
- IPMU
- Tohoku
- Tokyo
- Kyoto

Chile

- Pontificia Universidad Catolica
- University of Chile

South Africa

• Kwazulu-Natal, SA

Graduate students:

- Dominic Beck (2016-2019)
- Clara Vergès (2017-2020)
- Hamza El Bouhargani
- Baptiste Jost

Joining students:

- Magdy Morshed
- Arianna Rizzieri
- Raphaël Kou

Permanent researchers:

- James Bartlett (Collaboration Council Oversight Committee)
- Josquin Errard (co-lead of the BB WG, member of TAC)
- Ken Ganga (Talks panel)
- Jean-Baptiste Melin
- Radek Stompor (Membership panel)

Graduate students:

Adrien La Posta

Permanent researchers:

- Thibaut Louis (co-lead of PS WG)
- Xavier Garrido (co-lead of PS WG)

SO Site in Chile: Next to Existing Telescopes

- 5,200 meters
- high and dry
- 23 degree
 South Latitude
- Established site
- Room for expansion

SO Construction is Underway

15m 19m

- 6-meter-primary mirror
- Detectors measure 6 wavelength bands: 1-10 mm (30-280 GHz)
- >30,000 Transition Edge Sensor detectors
- Arcmin resolution

SO will search for primordial gravitational waves with three 42 cm refractors, or 'Small Aperture Telescopes'

30,000 detectors 1-10 mm range

Recent developments :

Germany, November 3rd

Chile, November 10th

SO Addresses Key Cosmological and Astrophysics Questions

- Dark matter : CMB lensing probes
- Feedback and IGM : KSZ and TSZ. With LSS surveys can be a novel probe of the inter cluster medium and feedback
- Gravitational waves, shape of primordial spectrum, non-Gaussianity
- CMB fluctuations sensitive to many possible dark matter properties
- Cosmological model

- Variable radio sky
- Search for Planet 9
- Galactic Science (Hensley et al 2021)
 - Legacy arcmin-resolution millimeter-wave sky maps
 - Map of large-scale distribution of magnetic fields in the Galaxy

		Parameter	$SO-Baseline^{a}$	${\bf SO-Baseline}^b$	$SO-Goal^c$	$\operatorname{Current}^d$	Method	Sec.
SO Science			(no syst)			(2018-19)		
Caala	Primordial	r	0.0024	0.003	0.002	0.03	BB + ext delens	3.4
Goals	perturbations	$e^{-2\tau}\mathcal{P}(k\!=\!0.2/\mathrm{Mpc})$	0.4%	$\mathbf{0.5\%}$	0.4%	3%	TT/TE/EE	4.2
		$f_{ m NL}^{ m local}$	1.8	3	1	5	$\kappa\kappa \times \text{LSST-LSS} + 3\text{-pt}$	5.3
			1	2	1		kSZ + LSST-LSS	7.5
From: The Simons	Relativistic species	$N_{ m eff}$	0.055	0.07	0.05	0.2	$TT/TE/EE + \kappa\kappa$	4.1
Observatory:	Neutrino mass	$\Sigma m_{ u}$	0.033	0.04	0.03	0.1	$\kappa\kappa$ + DESI-BAO	5.2
science goals and			0.035	0.04	0.03		tSZ-N \times LSST-WL	7.1
			0.036	0.05	0.04		tSZ-Y + DESI-BAO	7.2
forecasts	Deviations from Λ	$\sigma_8(z=1-2)$	1.2%	2 %	1%	7%	$\kappa\kappa$ + LSST-LSS	5.3
			1.2%	2 %	1%		tSZ-N \times LSST-WL	7.1
Deter Ada at al		$H_0 \; (\Lambda { m CDM})$	0.3	0.4	0.3	0.5	$TT/TE/EE + \kappa\kappa$	4.3
Peter Ade, et al.,	Galaxy evolution	$\eta_{ m feedback}$	2%	3%	2%	50 - 100%	kSZ + tSZ + DESI	7.3
JCAP02 (2019)		$p_{ m nt}$	6%	8%	5%	50-100%	kSZ + tSZ + DESI	7.3
056	Reionization	Δz	0.4	0.6	0.3	1.4	TT (kSZ)	7.6

 a This column reports forecasts from earlier sections (in some cases using 2 s.f.) and applies no additional systematic error.

^b This is the nominal forecast, increases the column (a) uncertainties by 25% as a proxy for instrument systematics, and rounds up to 1 s.f.

 c This is the goal forecast, has negligible additional systematic uncertainties, and rounds to 1 s.f.

^d Primarily from [44] and [287]. ^[44] BICEP2 and Planck collaborations, Joint Analysis of BICEP2/Keck Array and Planck Data, Phys. Rev. Lett. 114 (2015) 101301 [287] Planck collaboration, Planck 2018 results. VI. Cosmological parameters

Table 9. Summary of SO key science goals. All of our SO forecasts assume that SO is combined with *Planck* data. 10

SO Schedule as of 2021

Timeline

Early '21	Mid '22	Early '23	Mid '24
Testing and integration, optical validation	First light for both SAT + LAT	First science observations expected	Full science observations expected

SAT science : r and birefringence

- We aim at $\sigma(r) \approx 0.003$ without delensing
- Several pipelines are being developed
- Current data challenge to test them

9		SO Baseline		SO	Goal
	Method	pess- $1/f$	opt-1/f	pess- $1/f$	$\operatorname{opt-1}/f$
$A_{\rm lens} = 1$	C_{ℓ} -Fisher	$\sigma = 2.4$	$\sigma = 1.9$	$\sigma = 1.7$	$\sigma = 1.5$
	C_{ℓ} -MCMC	1.9 ± 2.6	2.3 ± 2.3	2.2 ± 2.1	2.4 ± 2.1
	xForecast	1.3 ± 2.7	1.6 ± 2.1	1.4 ± 1.9	1.6 ± 1.6
	${\tt xForecast}^{ m b}$	0.0 ± 4.0	0.0 ± 3.5	0.0 ± 3.3	0.2 ± 2.8
	$BFoRe^{b}$	-0.5 ± 5.8	-0.5 ± 3.6	-0.6 ± 4.3	-0.5 ± 3.4
	ILC^{b}	-0.4 ± 3.9	-0.3 ± 3.1	-0.2 ± 3.9	-0.3 ± 3.0
$A_{\rm lens} = 0.5$	C_{ℓ} -Fisher	$\sigma = 1.8$	$\sigma=1.4$	$\sigma = 1.2$	$\sigma = 0.9$
	C_{ℓ} -MCMC	1.7 ± 2.1	2.2 ± 2.0	2.0 ± 1.7	2.2 ± 1.7
	xForecast	1.3 ± 2.1	1.6 ± 1.5	1.3 ± 1.3	1.5 ± 1.0
	${\tt xForecast}^{ m b}$	0.1 ± 3.2	0.1 ± 2.6	0.0 ± 2.5	0.3 ± 1.8
	$\texttt{BFoRe}^{\mathrm{b}}$	-0.2 ± 5.0	-0.4 ± 2.6	-0.6 ± 3.2	-0.5 ± 2.0
	ILC^{b}	-0.3 ± 3.0	-0.3 ± 2.4	-0.1 ± 2.8	-0.2 ± 2.3

 I generalised parametric component separation (Stompor et al 2016: fgbuster) in order to constrain cosmic birefringence in the presence of foregrounds and instrumental systematic effects

Cosmic birefringence

- Birefringence generates non-zero EB
- Could be a hint of photon/axion interaction
- More generally : Chern simons effect or parity violating interactions

Credit : Minami / Keck

The polarisation angle of the telescope problem

- Miscalibration of the polarisation angle of the telescope degenerate with birefringence angle
- Lift the degeneracy : Minami, Komatsu 2020 uses foregrounds
- Vanishing EB foregrounds spectrum is assumed to fit for miscalibration
- Hint of non-zero birefringence angle β =0.35 ± 0.14° from Planck data
- Clark et al 2021 : non-zero foregrounds EB 80

Foreground cleaning and instrumental effects

- We develop a method which is agnostic wrt foregrounds EB and uses calibration priors to lift degeneracy.
 - Tau A measurements $\sigma(\alpha) \approx 0.27^{\circ}$ (Aumont et al 2020) Ο
 - Wire grid on top of the window $\sigma(\alpha) \approx 1 0.2^{\circ}$ (Bryan et al 2018) Ο
 - Drone $\sigma(\alpha) \approx 0.1 0.01^{\circ}$ (Nati et al 2017) Ο
- Frequency dependence of signals
 - Propagation of prior informations Ο

credit : Nasa/Hubble

credit : Nati 2017

Data model

Miscalibration matrix

Birefringence matrix

$$X(\{\alpha_{1},...,\alpha_{n}\}) = \begin{pmatrix} \cos(2\alpha_{1}) & \sin(2\alpha_{1}) & & & & \\ -\sin(2\alpha_{1}) & \cos(2\alpha_{1}) & & & \\ & \ddots & & \\ & & & \cos(2\alpha_{n}) & \sin(2\alpha_{n}) \\ 0 & & & -\sin(2\alpha_{n}) & \cos(2\alpha_{n}) \end{pmatrix} B(\{\beta_{b}\}) = \begin{pmatrix} \cos(2\beta_{b}) & \sin(2\beta_{b}) & 0 & 0 & 0 \\ -\sin(2\beta_{b}) & \cos(2\beta_{b}) & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix} \\ d_{p} = X(\{\alpha_{1}, ..., \alpha_{n}\}) A_{p}(\{\beta_{fg}\}) B(\{\beta_{fg}\}) B(\{\beta_{b}\}) B(\{\beta$$

Forecast case study : SO SAT 0.1 deg prior on 93 GHz

 $\begin{array}{l} Step 1: \\ Spectral likelihood \\ X\{\alpha\}.A\{\beta_{fg}\} \\ estimation \end{array}$

- d0s0 pysm model Zonca et al 2021
- baseline white noise, pessimistic 1/f
- Taking advantage of the foregrounds to constrain miscalibration angles : only one prior needed
- We can propagate statistical residuals for the estimation of cosmological parameters

Evolution of precision wrt prior precision (on 93 GHz)

Step 2 : Cosmological likelihood

Step 2 : Cosmological likelihood

Step 2 : Cosmological likelihood

Step 2 : Cosmological likelihood

Step 2 : Cosmological likelihood

Conclusion :

- Broad science goals (from inflation to Planet 9, and birefringence !).
- Strong involvement of French groups, well positioned for leading roles in scientific analysis.
- Observations starting soon, stay tuned !
- I developed a new method that with SO observation would improve the constraint cosmic
 - birefringence with a minimum amount of assumption and in a statistically robust framework.
- Jost et al in prep
- Application to existing SO pipelines / test of performances on current data challenge
- LAT extension / SAT+LAT

