#### First low latitudes reconstruction of the dust polarization Spectral Energy Distribution variation

Alessia Ritacco, François Boulanger, Jean-Marc Delouis, Jean-Loup Puget







#### Outline

- Scientific context
- Dust variation maps in polarization
- Cross power spectra analysis
- Polarization dust SED extrapolation
- Conclusions and perspectives



#### Primordial Universe probe The Cosmic Microwave Background



CMB polarization patterns can be expressed: **E-modes**, of even parity, and the **B-modes**.

**B-modes** can only be produced by primordial gravitational waves in the early universe.

If detected, will probe the existence of the inflation and give us access to a physics beyond the current Standard Model.



## Challenges for the CMB B-modes detection



- Big arrays of high sensitive detectors to increase SNR
- Instrumental systematic effects control
- Absolute calibration of the polarization angle
- Accurate component separation of foreground emissions



OAC

Astronomico di Cagliari

## Challenges for the CMB B-modes detection



Hazumi et al. 2020 Proc. of SPIE

- Big arrays of high sensitive detectors to increase SNR
- Instrumental systematic effects control
- Absolute calibration of the polarization angle
- Accurate component separation of foreground emissions



OAC

Astronomico di Cagliari

# CMB polarization B-modes detection foreground challenge



Planck Dust intensity with MF @353 GHz



Polarization and total intensity SED difference suggests that there might be **spatial variation SEDs**. (Planck 2018 XI)



Astronomico





DENS DE L'ÉCOLE NORMALE SUPÉRIEURE

Osservatorio

Astronomico di Cagliari INAF

#### **Dust polarization S**pectral Energy **D**istribution **variations** mathematical definitions

**Dust emission** 
$$D_{\nu}(\eta) = \frac{S_p(\nu)}{S_p(\nu_0)} \left( D_{\nu_0}(\eta) + \frac{\omega_{\beta}(\eta) \ln \frac{\nu}{\nu_0}}{\omega_0} + \frac{\omega_T(\eta) \times [\Theta_{\nu}(T_0) - \Theta_{\nu_0}(T_0)]}{\omega_0} \right)$$

where

$$\nu(T_0) = \frac{x}{T_0} \frac{e^x}{e^x - 1} \qquad x = \frac{h\nu}{k_B T_0}$$

The mean polarization SED is accounted for in:

 $\Theta$ 

$$\begin{split} \gamma(\nu) &= \frac{D_{\nu} * D_{\nu_0}}{D_{\nu_0}^2} \qquad \frac{S_p(\nu)}{S_p(\nu_0)} = \gamma(\nu) + \delta\gamma(\nu) \\ with \left| \frac{\delta\gamma_{\nu}}{\gamma_{\nu}} \right| << 1 \end{split}$$

 $\delta \gamma(v)$  is not zero if there is a frequency decorrelation

 $D_{v} = Q_{v} \text{ or } U_{v}$ SED Q and U might differ v : 100, 143, 217, 353 GHzwith  $v_{0} = 353 \text{ GHz}$  $T_{0} = 19.6 \text{ K}$  $\eta : \text{sky vector}$ 

Chluba et al. MNRAS 472, 1195-1213 (2017)

Mangilli et al. A&A 647, A52 (2021)



Astronomico di Cagliari

Alessia Ritacco - CMB-France #2 November 16th

### Residual dust maps

$$\begin{split} R_{\nu}(\eta) &= D_{\nu}(\eta) - \gamma(\nu) D_{\nu_0}(\eta) \\ &= \delta \gamma(\nu) D_{\nu_0}(\eta) + \omega_{\beta}(\eta) \gamma_{\nu} \ln \frac{\nu}{\nu_0} + \omega_T(\eta) \gamma_{\nu} [\Theta_{\nu}(T_0) - \Theta_{\nu_0}(T_0)] \end{split}_{-2}$$

- Synchrotron emission is extrapolated and subtracted at 100 and 143 GHz
- $\gamma(v)$  is estimated in a given mask
- Planck HFI Sroll2.0 release used
- Fraction of the sky 90%
- Nside=32

# SED variations increase their significance with frequency









#### Residual dust maps



217 GHz fsky 90%



Most of the variation comes from the regions close to the mask threshold

#### Extrapolating dust SED variation from Temp to Polar

OAC Osservatorio Astronomico di Cagliari

Planck's law with T,  $\tau$ ,  $\beta$  GNILC maps





#### Residual dust Polarized intensity maps



#### In polarized intensity P map we find SED variations correlated to dust FIR SED variations in total intensity from GNILC MBB fit



OAC

# Cross Power Spectra analysis





Osservatorio

Astronomico di Cagliari INAF

OAC



#### Cross Power Spectra analysis Full-mission × GNILC



14

#### Dependance on polarization angle variation $\phi$





The farthest we go from  $\boldsymbol{v}_0$  the decorrelation increases

#### 15



#### Dust mean SED polarization vs total intensity

P R E L I M I N A R Y

The ratio between the polarization SED coefficients estimated on Sroll2.0 polarization maps  $\gamma^{P}$  with respect to GNILC total intensity  $\gamma^{g}$  is given by:





Deviation from the unity is evidence of a small difference of SED between polarization and total intensity.

But remember that our estimate of mean dust polarization SED is biased by frequency decorrelation.

#### SED extrapolation binned spectra $\ell = [4, 30]$

$$R_{\nu}(\eta) = D_{\nu}(\eta) - \gamma(\nu)D_{\nu_{0}}(\eta)$$
$$= \delta\gamma(\nu)D_{\nu_{0}}(\eta) + \omega_{\beta}(\eta)\gamma_{\nu}\ln\frac{\nu}{\nu_{0}} + \omega_{T}(\eta)\gamma_{\nu}[\Theta_{\nu}(T_{0}) - \Theta_{\nu_{0}}(T_{0})]$$



Osservatorio Astronomico di Cagliari

INAF

17

OAC

Alessia Ritacco - CMB-France #2 November 16th

#### **Conclusions and perspectives**



We are making progress in characterizing Galactic dust polarization!

- Variations of dust SED in polarization detected close to the galactic plane;
- Residuals from total intensity GNILC maps correlates with polarization **but** this correlation accounts only for part of the signal;
- We observe frequency decorrelation from changes of polarization angles increasing from 217 to 100 GHz;
- Two possible interpretations need to be considered:
  - 1) variation of dust spectral index and temperature;
  - 2) additional polarization galactic component.





#### THANK YOU FOR THE ATTENTION!



Alessia Ritacco - CMB-France #2 November 16th

