CMB-France

Statistical separation of dust and CIB with Wavelet Phase Harmonics

Constant Auclair

PhD student under the supervision of François Boulanger and Erwan Allys

November 16, 2021

Current models of CMB foregrounds based on Planck data suffer from the difficulty to separate dust and CIB

Cosmic Infrared Background (CIB) \implies cumulative infrared emission from all the galaxies throughout cosmic history

Dust and CIB :

Similar SED !

Herschel SPIRE observation at 500m

 \implies Component separation using **new statistical tools**

(Mallat+ 2020, Allys+ 2020, Régaldo 2021)

How to do it?

CIB is statistically isotropic \implies We can compute its WPH statistics on simulations or clean sky fields

Then, can we retrieve the **dust** and its **statistics**?

Dust WPH statistics \implies generative model (Niall Jeffrey, 10 a.m.)

 \implies Data : 1 component mixture map, 1 independent CIB map How can we separate dust from CIB?

Component separation method

Principle of the component separation algorithm (adapted from Régaldo-Saint Blancard 2021) Wavelet Phase Harmonics

Data

Validation and future improvements

Example on Herschel SPIRE observation

\implies Need for efficient non-Gaussian statistics

- Wavelet Phase Harmonics (WPH) statistics
 - Data science (Mallat+ 2020)
 - First application to astrophysics (Allys+ 2020, Régaldo 2021)
- How does it work?
 - Without training phase
 - Physically interpretable
 - 2 steps :
 - Multi-scale wavelets decomposition
 - Non-linearities → Interactions between scales

Wavelet Phase Harmonics (WPH) : Decomposition

Step 1 : Multi-scale decomposition \longrightarrow local filtering over a range of scales and orientations

Wavelet Phase Harmonics (WPH) : Couplings characterization

Step 2 : Characterize the interactions between scales using a non-linear operator : $[z]^p = |z|e^{iarg(z) \times p}$

$$C^{p_1,p_2}_{j_1,j_2} = \mathsf{Cov}([\rho * \psi_{j_1}]^{p_1}(\vec{x}), [\rho * \psi_{j_2}]^{p_2}(\vec{x})) \Longrightarrow \left\{ S^{11}, S^{00}, C^{\mathsf{phase}}, C^{00} \dots \right\}$$

Constant Auclair

注 (1) 注

ロトスロトメヨトメ

CIB simulation

 \Longrightarrow We generate new realizations of the CIB

ㅁㅏㅓ@ㅏㅓㄹㅏㅓㄹㅏ

Results (work in progress)

We are able to separate the power spectra

So far \implies statistical separation

Example on Herschel SPIRE observation

Example on Herschel SPIRE observation

Results

 \implies Separation of two non-Gaussian fields using only 2 maps

On-going work

Cross-WPH statistics to characterize correlations between two or more fields

- \implies Get a more deterministic dust/CIB separation
- \implies Develop a multi-frequency model of dust and CIB emission for syntheses and separation

Thank you for listening !

Dust

Separated Dust

The WPH statistics as a generative model

- Validated using large scale structure simulations (Allys+ 2020)
- Reproduce the usual statistics in cosmology
- Necessary for our component separation
- Principle :
 - Start from a white noise
 - Gradient descent in pixel space
 - ightarrow reproduce the WPH statistics

- Difference between CIB simulation and Lockman hole?
- How does dust contamination impact the WPH statistics?

Statistical characterization

Comparison of the normalized WPH moments