

Assessing consistency between CMB temperature and polarization measurements

Adrien La Posta - IJClab

The Hubble tension

The Hubble tension

The Hubble tension

T-E Correlation coefficient

Solutions to the Hubble tension ?

Option 1 : Systematics affecting the local measurements of H_0 ?

Solutions to the Hubble tension ?

Option 1 : Systematics affecting the local measurements of H_0 ?

Option 2 :

Physics beyond Λ CDM that shift the constraints on H₀ derived from the CMB

Beyond ACDM

The H_0 Olympics: A fair ranking of proposed models

Nils Schöneberg^{a,*}, Guillermo Franco Abellán^b, Andrea Pérez Sánchez^a, Samuel J. Witte^c, Vivian Poulin^b, Julien Lesgourgues^a

^aInstitute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, D-52056 Aachen, Germany.

^bLaboratoire Univers & Particules de Montpellier (LUPM), CNRS & Université de Montpellier (UMR-5299), Place Eugène Bataillon, F-34095 Montpellier Cedex 05, France.

^cGRAPPA Institute, Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

Gaussian Q_{DMAP} $\Delta \chi^2$ ΔAIC Finalist Model ΔN_{param} M_B Tension Tension XACDM -19.416 ± 0.012 X 0.00 0.00 X 0 4.4σ 4.5σ $\Delta N_{\rm ur}$ -19.395 ± 0.019 X-6.10-4.10X 3.6σ 3.8σ XSIDR 1 -19.385 ± 0.024 3.2σ 3.3σ X-9.57-7.571 1 X -4.83X mixed DR 2 -19.413 ± 0.036 3.3σ 3.4σ -8.83X DR-DM -4.92X2 -19.388 ± 0.026 3.2σ 3.1σ X-8.92X $-19.440\substack{+0.037\\-0.039}$ X $SI\nu + DR$ 3 3.8σ 3.9σ X -4.981.02 X $-19.380^{+0.027}_{-0.021}$ Majoron 3 3.0σ 2.9σ -15.49-9.491 0 1 $-19.390\substack{+0.018\\-0.024}$ primordial B X -11.42-9.421 3.5σ 3.5σ 1 1 varying m_e 1 -19.391 ± 0.034 2.9σ 2.9σ -12.27-10.27varying $m_e + \Omega_k$ 1 0 2 -19.368 ± 0.048 2.0σ 1.9σ -17.26-13.26 $-19.390\substack{+0.016\\-0.035}$ EDE 3 3.6σ -21.98-15.981 3 1.6σ $-19.380\substack{+0.023\\-0.040}$ NEDE 3 3.1σ 1.9σ -18.93-12.931 0 $-19.397^{+0.017}_{-0.023}$ EMG 3 -18.56-12.561 3 3.7σ 2.3σ CPL 2 X -0.94X X -19.400 ± 0.020 4.1σ -4.94 3.7σ PEDE -19.349 ± 0.013 2.24 X0 2.7σ 2.8σ 1 2.24XX GPEDE 1 -19.400 ± 0.022 3.6σ 4.6σ X1.55 X-0.45X X $DM \rightarrow DR+WDM$ 2 3.81 X -19.420 ± 0.012 4.5σ 4.5σ -0.19 $DM \rightarrow DR$ 2 -19.410 ± 0.011 4.3σ X -0.533.47 X X 4.5σ

Table 1: Test of the models based on dataset $\mathcal{D}_{\text{baseline}}$ (Planck 2018 + BAO + Pantheon), using the direct measurement of M_b by SH0ES for the quantification of the tension (3rd column) or the computation of the AIC (5th column). Eight models pass at least one of these three tests at the 3σ level.

arXiV:2107.10291

Beyond ΛCDM

The H_0 Olympics: A fair ranking of proposed models

Nils Schöneberg^{a,*}, Guillermo Franco Abellán^b, Andrea Pérez Sánchez^a, Samuel J. Witte^c, Vivian Poulin^b, Julien Lesgourgues^a

^aInstitute for Theoretical Particle Physics and Cosmology (TTK), RWTH Aachen University, D-52056 Aachen, Germany.

^bLaboratoire Univers & Particules de Montpellier (LUPM), CNRS & Université de Montpellier (UMR-5299), Place Eugène Bataillon, F-34095 Montpellier Cedex 05, France.

^cGRAPPA Institute, Institute for Theoretical Physics Amsterdam and Delta Institute for Theoretical Physics, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands

Gaussian ODMAR

Table 1: Test of the models based on dataset $\mathcal{D}_{\text{baseline}}$ (Planck 2018 + BAO + Pantheon), using the direct measurement of M_b by SH0ES for the quantification of the tension (3rd column) or the computation of the AIC (5th column). Eight models pass at least one of these three tests at the 3σ level.

arXiV:2107.10291

Model	$\Delta N_{\rm param}$	M_B	Tension	Tension		$\Delta \chi^2$	ΔAIC		Finalist	
ACDM	0	-19.416 ± 0.012	4.4σ	4.5σ	X	0.00	0.00	X	X	
$\Delta N_{ m ur}$	1	-19.395 ± 0.019	3.6σ	3.8σ	X	-6.10	-4.10	X	X	
SIDR	1	-19.385 ± 0.024	3.2σ	3.3σ	X	-9.57	-7.57	~	🗸 🥥	
mixed DR	2	-19.413 ± 0.036	3.3σ	3.4σ	X	-8.83	-4.83	X	X	
DR-DM	2	-19.388 ± 0.026	3.2σ	3.1σ	X	-8.92	-4.92	X	X	
$SI\nu + DR$	3	$-19.440^{+0.037}_{-0.039}$	3.8σ	3.9σ	X	-4.98	1.02	X	X	
Majoron	3	$-19.380^{+0.027}_{-0.021}$	3.0σ	2.9σ	~	-15.49	-9.49	~	v @	
primordial B	1	$-19.390^{+0.018}_{-0.024}$	3.5σ	3.5σ	X	-11.42	-9.42	~	🗸 💿	
varying m_e	1	-19.391 ± 0.034	2.9σ	2.9σ	~	-12.27	-10.27	~	🗸 😐	
varving $m_e + \Omega_k$	2	-19.368 ± 0.048	2.0σ	1.9σ	1	-17.26	-13.26	1	🗸 😑	
EDE	3	$-19.390^{+0.016}_{-0.035}$	3.6σ	1.6σ	~	-21.98	-15.98	~	🗸 🐵	
NEDE	3	$-19.380^{+0.023}_{-0.040}$	3.1σ	1.9σ	~	-18.93	-12.93	~	V (2)	
EMG	3	$-19.397^{+0.017}_{-0.023}$	3.7σ	2.3σ	\checkmark	-18.56	-12.56	~	🗸 🕲	
CPL	2	-19.400 ± 0.020	3.7σ	4.1σ	X	-4.94	-0.94	X	X	
PEDE	0	-19.349 ± 0.013	2.7σ	2.8σ	~	2.24	2.24	X	X	
GPEDE	1	-19.400 ± 0.022	3.6σ	4.6σ	X	-0.45	1.55	X	X	
$\rm DM \rightarrow \rm DR + \rm WDM$	2	-19.420 ± 0.012	4.5σ	4.5σ	X	-0.19	3.81	X	X	
$\rm DM \rightarrow \rm DR$	2	-19.410 ± 0.011	4.3σ	4.5σ	X	-0.53	3.47	X	X	
		-				-				

Goal : obtain a higher expansion rate H_0

observations

Goal : obtain a higher expansion rate H₀

Goal : obtain a higher expansion rate H_0

$$\overbrace{\theta_*}^{\bullet} = \frac{r_s^*}{D_A^*} \longrightarrow \text{ Decrease } r_s^* = \int_{z^*}^{\infty} \underbrace{\frac{dz}{H(z)}}_{\frac{3H^2(z)}{8\pi G}} c_s(z) \\ \xrightarrow{\frac{3H^2(z)}{8\pi G}}_{early} = \rho_{rad}(z) + \rho_{matter}(z)$$

Goal : obtain a higher expansion rate H₀

$$\begin{array}{c} \overbrace{\theta_{*}}=\frac{r_{s}^{*}}{D_{A}^{*}} & \end{array} \\ \hline \mathbf{Fixed by} \\ \mathbf{observations} \end{array} \begin{array}{c} \mathbf{Decrease} \ r_{s}^{*}=\int_{z^{*}}^{\infty} \underbrace{dz}_{H(z)} c_{s}(z) \\ \hline \frac{3H^{2}(z)}{8\pi G} \bigg|_{early} = \rho_{rad}(z) + \rho_{matter}(z) + \rho_{EDE}(z) \end{array}$$

Goal : obtain a higher expansion rate H_0

$$\begin{array}{c} \overbrace{\theta_{*}}=\frac{r_{s}^{*}}{D_{A}^{*}} & \end{array} \end{array} \text{ Decrease } r_{s}^{*}=\int_{z^{*}}^{\infty} \underbrace{dz}_{H(z)} c_{s}(z) \\ \overbrace{\theta_{*}}=\frac{1}{D_{A}^{*}} & \\ \overbrace{\theta_{*}}=\frac{1}{D_$$

$$\ddot{\phi} + 3H\dot{\phi} + V'(\phi) = 0$$
$$V_n(\phi) = m^2 f^2 \left[1 - \cos\left(\frac{\phi}{f}\right)\right]^n$$

- Field initially frozen : act as dark energy at early times
- Starts to oscillate when H~m

Early Dark Energy - ACT DR4 results

ACT DR4 TT+TE+EE + τ [EDE, n = 3] ACT DR4 + Planck 2018 TT ($\ell_{max} = 650$) + τ [EDE, n = 3] Planck 2018 TT+TE+EE [EDE, n = 3] ACT DR4 data shows a ACT DR4 + Planck 2018 TT ($\ell_{\text{max}} = 650$) + Lensing + BAO + τ [EDE, n = 3] preference for EDE (improvement of the x²) $\log_{10}(z_c)$ with a ~2.5 σ evidence 3.3 However, there is no 2.4arXiV:2109.04451 evidence for EDE in $\overset{_{i_{i}}}{\theta}$ 1.2Planck data alone 0.6 90 84 $\overset{0}{H}$ 78 66 0.960.88 $\overset{\infty}{\mathcal{S}}$ 0.8 0.720.64 $0.1 \ 0.2 \ 0.3 \ 0.4$ 3.3 3.6 3,9 0.6 1.2 1.8 2.4 66 72 78 84 90 0.640.720.800.880.96 fede $\log_{10}(z_c)$ θ_i \hat{H}_0 S_8

Early Dark Energy - ACT DR4 results

ACT DR4 TT+TE+EE + τ [EDE, n = 3] ACT DR4 + Planck 2018 TT ($\ell_{max} = 650$) + τ [EDE, n = 3] Planck 2018 TT+TE+EE [EDE, n = 3] ACT DR4 data shows a ACT DR4 + Planck 2018 TT ($\ell_{\text{max}} = 650$) + Lensing + BAO + τ [EDE, n = 3] preference for EDE (improvement of the x²) $\log_{10}(z_{c}) \\ 3.6 \\$ with a ~2.5 σ evidence 3.3 However, there is no 2.4arXiV:2109.04451 evidence for EDE in $\overset{_{i}}{\theta}^{1.8}$ 1.2Planck data alone 0.690 84 $\overset{0}{H}$ 78 66 We need additional 0.96constraints on EDE 0.88 $\overset{\infty}{\mathcal{S}}$ 0.8 0.720.64 $0.1 \ 0.2 \ 0.3 \ 0.4$ 3.3 3.6 3,9 0.6 1.2 1.8 2.4 66 72 78 84 90 0.640.720.800.880.96 $\log_{10}(z_c)$ \hat{H}_0 S_8

fede

 θ_i

Many models have already been proposed to solve the Hubble tension

Model	$\Delta N_{ m param}$
ACDM	0
$\Delta N_{ m ur}$	1
SIDR	1
mixed DR	2
DR-DM	2
$SI\nu + DR$	3
Majoron	3
primordial B	1
varying m_e	1
varying $m_e + \Omega_k$	2
EDE	3
NEDE	3
EMG	3
CPL	2
PEDE	0
GPEDE	1
$\rm DM \rightarrow \rm DR{+}\rm WDM$	2
$\rm DM \rightarrow \rm DR$	2

Many models have already been proposed to solve the Hubble tension

Model	$\Delta N_{\rm param}$
ΛCDM	0
$\Delta N_{ m ur}$	1
SIDR	1
mixed DR	2
DR-DM	2
$SI\nu + DR$	3
Majoron	3
primordial B	1
varying m_e	1
varying $m_e + \Omega_k$	2
EDE	3
NEDE	3
EMG	3
CPL	2
PEDE	0
GPEDE	1
$\rm DM \rightarrow \rm DR{+}\rm WDM$	2
$\rm DM \rightarrow \rm DR$	2

• **Option 1**: Put constraints on all available model with different experiments to have a strong evidence for some of them ...

• **Option 2 :** Study methods that allow to put constraints on deviation from **ACDM** in a model independent way

Many models have already been proposed to solve the Hubble tension

Model	$\Delta N_{\mathrm{param}}$		
ΛCDM	0		
$\Delta N_{ m ur}$	1		
SIDR	1		
mixed DR	2		
DR-DM	2		
$SI\nu + DR$	3		
Majoron	3		
primordial B	1		
varying m_e	1		
varying $m_e + \Omega_k$	2		
EDE	3		
NEDE	3		
EMG	3		
CPL	2		
PEDE	0		
GPEDE	1		
$\rm DM \rightarrow \rm DR{+}\rm WDM$	2		
$\rm DM \rightarrow \rm DR$	2		

• **Option 1**: Put constraints on all available model with different experiments to have a strong evidence for some of them ...

 Option 2 : Study methods that allow to put constraints on deviation from ΛCDM in a model independent way

Modelling deviations with transfer functions

Idea : Sample the joint posterior distribution of cosmological parameters and extra-parameters modelling the inconsistency between temperature and polarization measurements.

Idea : Sample the joint posterior distribution of cosmological parameters and extra-parameters modelling the inconsistency between temperature and polarization measurements.

We fix the cosmology with the TT power spectrum

Idea : Sample the joint posterior distribution of cosmological parameters and extra-parameters modelling the inconsistency between temperature and polarization measurements.

We have to define a model for
$$\; \tilde{C}_{\ell}^{TE} \;$$
 and $\; \tilde{C}_{\ell}^{EE} \;$

Modelling deviations with transfer functions

N extra-parameters

Modelling deviations with transfer functions

TE ^{r}E

$$\begin{split} \tilde{C}_{\ell}^{TE} &= F_{\ell} C_{\ell}^{TE} \\ \tilde{C}_{\ell}^{EE} &= F_{\ell}^2 C_{\ell}^{EE} \end{split}$$

	x ² / dof (PTE)
ACT TT/TE/EE	6.00/9 (0.74)
ACT TE/EE + Planck TT	8.64/9 (0.47)
SPT3G TE/EE	12.82/11 (0.31)
SPT3G TE/EE + Planck TT	18.39/11 (0.07)

T to E leakage

 $= C_{\ell}^{TE} + \beta_{\ell} C_{\ell}^{TT}$ $C_{\ell}^{EE} + 2\beta_{\ell} C_{\ell}^{TE}$ \tilde{C}_{ℓ}^{TE} $= C_{\ell}^{TE} +$

T to E leakage

$$\begin{split} \tilde{C}_{\ell}^{TE} &= C_{\ell}^{TE} + \beta_{\ell} C_{\ell}^{TT} \\ \tilde{C}_{\ell}^{EE} &= C_{\ell}^{EE} + 2\beta_{\ell} C_{\ell}^{TE} \\ &+ \beta_{\ell}^2 C_{\ell}^{TT} \end{split}$$

	x ² / dof (PTE)
ACT TT/TE/EE	4.63/9 (0.87)
ACT TE/EE + Planck TT	15.11/9 (0.09)
SPT3G TE/EE	11.06/11 (0.44)
SPT3G TE/EE + Planck TT	9.14/11 (0.61)

 $\tilde{\gamma}TE$ TEEE

EE bias

$$\begin{split} \tilde{C}_{\ell}^{TE} &= C_{\ell}^{TE} \\ \tilde{C}_{\ell}^{EE} &= \alpha_{\ell} C_{\ell}^{EE} \end{split}$$

	x ² / dof (PTE)
ACT TT/TE/EE	4.41/9 (0.88)
ACT TE/EE + Planck TT	5.81/9 (0.76)
SPT3G TE/EE	13.78/11 (0.25)
SPT3G TE/EE + Planck TT	16.82/11 (0.11)

TE bias

 $\tilde{\gamma}TE$ TEEE

TE bias

TE bias

$$\begin{split} \tilde{C}_{\ell}^{TE} &= \delta_{\ell} C_{\ell}^{TE} \\ \tilde{C}_{\ell}^{EE} &= C_{\ell}^{EE} \end{split}$$

	^{x²} / dof (PTE)
ACT TT/TE/EE	6.54/9 (0.68)
ACT TE/EE + Planck TT	17.43/9 (0.04)
SPT3G TE/EE	11.93/11 (0.37)
SPT3G TE/EE + Planck TT	10.68/11 (0.47)

Conclusion

- We found no significant deviations from ΛCDM in this analysis of Planck, SPT3G, ACTPol data
- With these methods, we are able to spot scale dependent T-E inconsistencies in a model independent way [with respect to ACDM]
- These methods also catch deviations due to instrumental systematic effects

SPT3G Likelihood

Computing the conditional power spectra

This method have already been applied to Planck data (Planck 2015 results XI. [arXiV:1507.02704])

$$\begin{pmatrix} \mathbf{C}^{\mathbf{TT}} \\ \mathbf{C}^{\mathbf{TE}} \\ \mathbf{C}^{\mathbf{EE}} \end{pmatrix} \begin{pmatrix} \Sigma_{TTTT} & \Sigma_{TTTE} & \Sigma_{TTEE} \\ \Sigma_{TETT} & \Sigma_{TETE} & \Sigma_{TEEE} \\ \Sigma_{EETT} & \Sigma_{EETE} & \Sigma_{EEEE} \end{pmatrix} \longrightarrow \begin{pmatrix} \mathbf{C}^{\mathbf{T}} \\ \mathbf{C}^{\mathbf{P}} \end{pmatrix} \begin{pmatrix} \Sigma_{T} & \Sigma_{TP} \\ \Sigma_{PT} & \Sigma_{P} \end{pmatrix}$$

Computing the conditional power spectra

This method have already been applied to Planck data (Planck 2015 results XI. [arXiV:1507.02704])

$$\begin{pmatrix} \mathbf{C}^{\mathbf{TT}} \\ \mathbf{C}^{\mathbf{TE}} \\ \mathbf{C}^{\mathbf{EE}} \end{pmatrix} \begin{pmatrix} \Sigma_{TTTT} & \Sigma_{TTTE} & \Sigma_{TTEE} \\ \Sigma_{TETT} & \Sigma_{TETE} & \Sigma_{TEEE} \\ \Sigma_{EETT} & \Sigma_{EETE} & \Sigma_{EEEE} \end{pmatrix} \longrightarrow \begin{pmatrix} \mathbf{C}^{\mathbf{T}} \\ \mathbf{C}^{\mathbf{P}} \end{pmatrix} \begin{pmatrix} \Sigma_{T} & \Sigma_{TP} \\ \Sigma_{PT} & \Sigma_{P} \end{pmatrix}$$

The polarization power spectrum ${\bf C}^{\bf P}$ conditioned on the temperature power spectrum follows a normal distribution with :

$$\mathbf{C}_{\text{cond}}^{P} = \mathbf{C}_{\text{th}}^{P}(\theta_{\text{bf}}^{T}) + \mathbf{\Sigma}_{TP}^{\top}\mathbf{\Sigma}_{T}^{-1}(\mathbf{C}_{\text{obs}}^{T} - \mathbf{C}_{\text{th}}^{T}(\theta_{\text{bf}}^{T}))$$
$$\mathbf{\Sigma}_{\text{cond}}^{P} = \mathbf{\Sigma}_{P} - \mathbf{\Sigma}_{TP}^{\top}\mathbf{\Sigma}_{T}^{-1}\mathbf{\Sigma}_{TP}$$

Planck 2018 conditional residuals

Residual plots :
$$\mathbf{C}^P_{ ext{cond}} - \mathbf{C}^P_{ ext{th}}(heta^T_{ ext{bf}})$$
 [red line]

Residual plots :
$$\mathbf{C}^P_{ ext{cond}} - \mathbf{C}^P_{ ext{th}}(heta^T_{ ext{bf}})$$
 [red line]

ACTPol DR4 cosmology

SPT3G cosmology

Temperature transfer function

Cosmology is fixed with the EE power spectrum

ູ່ ພິ

ctrum
$$\tilde{C}_{\ell}^{EE} = C_{\ell}^{EE}$$

ACTPOITT+TE+EE
Planck TT+TE+EE

1.02

1.01

1.00

0.99

0.98

0.97

0.96

...

1500

1000

500

2000

2500

3000

3500

 $\tilde{C}_{\ell}^{TT} = \epsilon_{\ell}^2 C_{\ell}^{TT}$ $\tilde{C}_{\ell}^{TE} = \epsilon_{\ell} C_{\ell}^{TE}$

□² / dof = 16.2 / 20 (PTE = 0.7) [PLANCK]