Wide-survey of the **QUIJOTE CMB experiment**

Federica Guidi, on behalf of the QUIJOTE collaboration

16 November 2021 @ CMB-France #2

Outline

- Context: low frequency CMB foregrounds
- The QUIJOTE experiment
- Wide-survey maps (MFI 10-20 GHz)
- Science with the maps

Galactic foregrounds

Primordial B-modes are fainter than polarized Galactic foregrounds at:

- all multipoles
- all frequencies

Galactic foregrounds in intensity

4

Galactic foregrounds in polarization

Galactic foregrounds in polarization

QUI-JOint-**TE**nerife experiment: **MFI** and **FTGI**

QT1 & MFI (Multi Frequency Instrument)

- 4 Horns, 32 channels, 4 frequency bands: (**11**, **13**, **17**, **19**) GHz
- Angular resolution: 0.92°-0.63°
- Sensitivity per channel, per horn: 500-600 μK sqrt(s)
- Stepping polar modulator (HWP)

Operative: Nov 2012 - Nov 2018, from the Teide observatory (Tenerife, Spain)

QT2 &

TGI and **FGI**

30GHz 40GHz

Observations

1. Galactic regions

Génova-Santos et al. 2015 (Perseus) Génova-Santos et al. 2017 (W44, W43, W47) Poidevin et al. (2018) (Taurus, L1527)

2. Cosmological fields

≈3 x 1000 deg² Expected sensitivity after 1 year: 10 μK/1°beam with MFI 1 μK/1°beam with TFGI

3. Wide-survey (nominal): Full northern sky $\approx 20.000 \text{ deg}^2$ $-32^0 \le \delta \le +88^\circ$

Noise std: $\approx 100 \,\mu\text{K/1}^{\circ}$ (I); $\approx 40 \,\mu\text{K/1}^{\circ}$ (Q,U)

Upcoming results

Papers based on the QUIJOTE wide-survey:

- 1. Northern sky survey at 10-20GHz with QUIJOTE-MFI (Rubiño-Martin et al., in prep.)
- 2. The Haze as seen by QUIJOTE-MFI (Guidi et al. , in prep.)
- 3. Pipeline of QUIJOTE-MFI (Genova Santos et al., in prep.)
- 4. Galactic AME sources in the MFI wide survey (Poidevin et al., in prep.)
- 5. **AME in the Galactic plane** (Fernández-Torreiro el at., in prep.)
- 6. Polarized loops and spurs as seen by QUIJOTE-MFI (Peel et al, in prep.)
- 7. SNRs as seen by QUIJOTE-MFI (López-Caraballo at al., in prep.)
- 8. Polarised synchrotron with power spectra of the MFI wide survey (Vansyngel et al., in prep.)
- 9. The **FAN region** as seen by QUIJOTE-MFI (Ruiz-Granados et al., in prep.)
- 10. W49, W51 and IC443 SNRs as seen by QUIJOTE (Tramonte et al., in prep.)
- 11. Polarization component separation with the QUIJOTE-MFI wide survey (De la Hoz et al., in prep.)
- 12. Radiosources in the QUIJOTE-MFI wide survey (Herranz et al., in prep.)
- 13. The North Galactic Spur as seen by QUIJOTE-MFI (Watson et al., in prep.)
- 14. **AME in Lambda Orionis** (Cepeda-Arroita et al., 2021)

Maps will be publicly available

Component separation in polarization

- Improved separation of the synchrotron component
- Other components consistent with previous results (COMMANDER)
- First synchrotron spectral index map \rightarrow Spatial variations of β
- No clear detection of curvature of the synchrotron spectrum

Polarized synchrotron at power spectrum level

- Power spectrum of the synchrotron determined at 23 GHz (EE and BB).
- Global spectral index β = -3.1 ± 0.1, compatible with previous works
- Ratio BB/EE = 0.20±0.05
 ABB/AEE (sync.) < ABB/AEE (dust)=0.5
 (Planck 2018. IV)
- Contamination of the CMB at 90 and 150 GHz by the synchrotron B-modes (shaded 2 sigma contours).

The synchrotron emission is equivalent to r = 0.01 at 90 GHz; r = 0.001 at 150 GHz

Anomalous Microwave Emission in intensity AAME (IV)

- Systematic study of AME compact sources, their SEDs, and parameters correlations (Poidevin et al., in prep.)
- Study of spatial variability of AME parameters in
 - Lambda Orionis 0 (Cepeda-Arroita et al. 2021)
 - Galactic plane 0 (Fernández-Torreiro el at., in prep.)

Microwaves (I) Planck (30 and 44 GHz, PIR IX)

The Haze

Diffuse intensity microwaves observed in the low frequency maps of:

- WMAP (Finkbeiner 2004)
- Planck (PIR IX 2013)

Only in intensity.

Interpretation: synchrotron radiation, activity of Galactic Center. Still unclear.

Possibly related counterparts:

The Haze

Including new QUIJOTE data:

> We reproduced previous works in intensity obtaining a slightly steeper Haze spectral index (e.g., β = -2.5 in PIR IX 2013)

Same analysis in polarization:

 provided an hint detection of polarized Haze and/or of curvature of the spectrum

Future of CMB from Tenerife

- 1. TGI and FGI: 30 (14 pix) and 40 (15 pix) GHz instrument.
 - a. Angular resolution: 0.32°-0.26°
 - b. Target sensitivity: 100 μ K · sqrt(s)
 - c. New installation in Nov 2021 \rightarrow routine observations
 - d. Science goals: low frequency foregrounds + B-modes, r ~0.05 after 3 years
- 2. MFI2: new multi-frequency instrument
 - a. Frequency coverage: three horns at 10–14 GHz, two horns at 16–20 GHz.
 - b. Digital backend based on FPGA for RFI removal.
 - c. Installation at QT1 end 2021.
 - d. Science goals: same as MFI, increasing the mapping speed by a factor 3.
- 3. TMS: Tenerife Microwave Spectrometer (Rubiño Martín et al., 2020; Alonso-Arias et al., 2020).
 - a. Installation: 2022
 - b. Frequency coverage: 10-20 GHz \rightarrow complementary to MFI2.
 - c. Spectral resolution: 0.25 GHz (40 frequency bands)
 - d. Angular resolution: ≈2°
 - e. Science goals: characterization of the absolute synchrotron monopole from our Galaxy, and pathfinder for CMB spectral distortions.

My present & future

NEUCosmoS: New era of EUropean CMB Cosmology with the South Pole Telescope (PI: Silvia Galli)

Conclusions

- New QUIJOTE maps are coming out soon (will be publicly available)
- New detailed characterization of polarized synchrotron
 - spatial variation of the spectral index
 - single power law in frequency
 - r = 0.01 at 90 GHz
- New hints for the understanding of AME
- Next future:
 - TFGI (30 and 40 GHz)
 - MFI-2 (new 10-20 GHz maps)
 - TMS (10-20 GHz spectrometer)

Thank you for listening!

