New Constraints on Primordial Gravitational Waves using *Planck*, WMAP, and BICEP/*Keck* Observations through the 2018 Observing Season

Clara Vergès on behalf of the BICEP/Keck Collaboration

Colloque national CMB France #2 IAP - Paris - Nov 16, 2021

HARVARD & SMITHSONIAN

Outline

- I. The BICEP/Keck program
 II. BK18 analysis and results

 A. From timestreams to maps
 B. Multi-component likelihood analysis and results
 - C. Data checks and systematics
- III.Beyond BK18
- IV.Other analysis

Outline

I. The BICEP/Keck program

- II. BK18 analysis and results
 - A. From time-stream to maps
 - B. Multi-component likelihood analysis and results
 - C.Data checks and systematics
- III.Beyond BK18
- IV.Other analysis

Overview of the BICEP/Keck Program

- Observations from the geographic South Pole
- Series of telescopes with similar designs
- Narrow and deep sky patch to target low-& BB peak @ 2 deg
- Multi-frequency coverage for component separation

The South Pole Station

- High altitude (9,300 ft = 2800 m, most of it ice)
- Extremely dry
- Lack of day/night cycles
 - very stable atmosphere
 - sky observable for 6 months of continuous darkness
- Minimal radio frequency interference

BICEP1 2005 - 2010 BICEP2 2010 - 2012 BICEP3 2015 -

Keck Array 2012 - 2019 BICEP Array 2019 -

South Pole Telescope

Accumulating data on the same deep sky patch since 2006!

IceCube

Small aperture strategy

- Compact, on-axis optics
- Boresight rotation
- Shielding from stray diffracted light + termination of sidelobes

Typical BICEP/Keck receiver

IR/thermal filtering to mitigate thermal load Superconducting niobium shield to mitigate magnetic pick-up Refractive optics cooled to 4K with a PTC FP cooled to 250 mK with a 3-stage He sorption refrigerator

New in BICEP3/BICEP Array

- > Optics design
 - Larger optics (680 mm)
 - Better filtering
 - Different materials
- Modular focal plane

 \rightarrow 10x optical throughput of a single BICEP2/Keck receiver

Detectors & Readout

Antenna-coupled superconducting TES bolometers

- 4'x4' tiles with 64 detector pairs per tile
- Dipole antenna that separates light polarisation in two orthogonal components
- Time domain multiplexing using DC biased SQUIDs
- Modular design as of BICEP3 to allow for easy replacement

Polarisation modulation?

- Pair-difference works at Pole up to high frequency thanks to atmosphere properties
- Requires extra attention to differential beams systematics

Bandpass & Frequency coverage

Bandpass

- LC filters printed directly onto the detector wafers
- Additional metal mesh low-pass edge filters on top of the modules to control out-of-band response
- ~30% bandwidth *in-situ* calibration with FTS

BK18 observing bands: 95, 150 and 220 GHz

- + New in Keck Array (2018) 270 GHz
- + New in BICEP Array (2019) **30/40 GHz +** future **95**, **150 & 220/270 GHz**

150 GHz

The BICEP/Keck Collaboration

95, 150 and 220/270 GHz

95 GHz

Degrees on sky

30/40, 95, 150 and 220/270 GHz

The BK18 data set

Frequency coverage

- 95GHz data from Keck Array + **BICEP3**
- 150GHz data from BICEP2 + Keck Array
- 220GHz data from Keck Array

Sky coverage

- Larger **BICEP3 field**: ~600 sq deg
- Smaller Keck/BICEP2 field ~400 sq deg

We include data taken up to the end of the 2018 observing season (Nov 2018)

Outline

I. The BICEP/Keck program II. BK18 analysis and results A.From time-stream to maps B. Multi-component likelihood analysis and

- results
- C.Data checks and systematics
- III.Beyond BK18
- IV.Other analysis

Raw Data

Time 50 mins

Cover the whole field in 60 such scans, then start over at new boresight rotation

From timestreams to maps

Timestream filtering

- Polynomial filtering for atmosphere + ground template removal + scan-synchronous signal removal
- Differential beam systematics deprojection
 - Sample combination of smoothed Planck T map + its derivative
 - Regress against timestream to find fit coefficients
 - Subtract template in timestream space

Map accumulation

- Accumulate data over each scanset (~50 min), then co-add per phase (9 scansets), perdeck angle and per year
- Do this for each detector pair

The BICEP/Keck Collaboration Right ascension [deg.]

The BICEP/Keck Collaboration Right ascension [deg.]

The BICEP/Keck Collaboration Right ascension [deg.]

Matrix-based E/B separation

- $\textbf{E} \rightarrow \textbf{B}$ leakage due to map-making
- Rotation from filtered, apodized Q/U maps to E/B maps mixes E/B
- $E \rightarrow B$ leakage that dominates real B modes
- Can be fully described by an observation matrix R that contains all operations from timestreams to map (including filtering, deprojection, apodization)

Purification matrix

- Construct a theory covariance matrix
- Observe it with the observation R
- Solve an eigenvalue problem to extract a "purification matrix" that removes leaked E and ambiguous modes from the maps

BK18 Noise Spectra and fsky

BK15 Noise Spectra and fsky

Outline

I. The BICEP/Keck program II. BK18 analysis and results A. From time-stream to maps **B.Multi-component likelihood analysis** and results C. Data checks and systematics III.Beyond BK18 **IV.Other analysis**

BK18 *ℓ***=80** bandpower noise/signal

Multicomponent likelihood analysis

Take all combinations of *BB* autoand cross-spectra between all BK and external maps, and evaluate the joint likelihood for a model containing:

- Lensed ACDM
- Tensor-to-scalar ratio r
- Foreground model

Sample the posterior distributions using Markov Chain Monte Carlos. Also use maximum-likelihood estimation to extract best-fit parameter values.

BK18 likelihood results

Spectral decomposition of BK18 data

BK18 constraints on inflation

BK18 constraints on inflation

Outline

I. The BICEP/Keck program II. BK18 analysis and results

- A. From time-stream to maps
- B. Multi-component likelihood analysis and results
- **C.Data checks and systematics** III.Beyond BK18 IV.Other analysis

Jackknife tests & data stability

Advantage of deep, narrow patch

- Error bar on a jackknife bandpower scales as $N_{\ell}/(f_{sky})^{\frac{1}{2}} \sim (f_{sky})^{\frac{1}{2}}$
- An additive systematic will be detected more easily on a deep patch
- Repetitive, highly symmetric scan strategy → helps reject some systematics and allows for construction of jackknives targeting them

Jackknife strategy for BK18

- 14 data splits: temporal, pair selection and hybrid
- Test each band/year separately
- χ and χ² tests twice on lowest five (*l*<200) and lowest nine (*l*<330) bandpowers
- Data compatibility with various receivers

All jackknife tests are passed after two data cuts

- November 2016 *Keck* data taken during station summer opening
- BICEP3 Tile 1 reflection and ghost beams due to an absent tile opposite of Tile 1

Likelihood validation

Validation on simulations

- Full COSMOMC runs on 200 sims
- Maximum likelihood searches on 499 sims
 - Unbiased results
 - Gives us $\sigma(r)$

Likelihood variations

Likelihood variations

- Allowing for dust decorrelation
- Letting A_{llens} free
- Varying sky coverage

TABLE II. Uncertainty and bias on r in simulations using a variety of foreground models. For the strongly decorrelated model bias is expected when refit without a decorrelation parameter so this case is in parentheses.

Include EE spectra

Alternate dust models

	$\overline{A_d}$	$\overline{A_s}$	$\sigma(r), \ \overline{r}/\sigma(r)$	
Model	$(\mu { m K}^2)$	$(\mu { m K}^2)$	no decorr.	with decorr.
Gaussian	3.9	0.1	$0.009, 0.0\sigma$	$0.010, 0.0\sigma$
G. Decorr.	5.1	0.1	$(0.012, +2.1\sigma)$	$0.014,~-0.1\sigma$
G. amp. mod.	4.4	0.0	$0.009, 0.0\sigma$	$0.010, 0.0\sigma$
PySM 1	11.3	0.9	$0.010,\ +0.1\sigma$	$0.012,\ +0.2\sigma$
PySM 2	25.6	0.8	$0.011, 0.0\sigma$	$0.012, 0.0\sigma$
PySM 3	11.6	0.9	$0.011, 0.0\sigma$	$0.013,\ -0.1\sigma$
MHDv3	3.2	7.1	$0.012,~-0.1\sigma$	$0.013,\ -0.4\sigma$
MKD	3.9	0.1	$0.009, 0.1\sigma$	$0.010, 0.0\sigma$
Vansyngel	5.5	0.1	$0.009, \ -0.1\sigma$	$0.010, 0.0\sigma$

T→**P** leakage

Differential beam systematics

- Leading order modes are deprojected at the time-stream level
- Undeprojected residuals beam map can be constructed using FFBM measurements

Specialised beam simulations

- Convlve undeprojected residuals beam map with Planck T map to get a T→P leakage map estimate
- Take auto- and cross-spectra of this map with our Q/U maps
- Add this extra bias in the likelihood analysis & run pipeline on 499 sims

 $\rightarrow \Delta r = 1.5 \pm 1.1 \text{ x } 10^{-3}$

Other systematics

Point sources

- Filtering matrix purified maps with a "Mexican Hat" wavelet
- Cross-referencing wit SPT3G source catalog (preliminary)
- Construct source mask and compare with/without on 499 sims $\rightarrow \Delta r \sim 3 \times 10^{-3}$

Bandpass uncertainty - important because of multi-component analysis

- Analysis of FTS measurements estimates ~ 1% bandpass uncertainty → we take 2% as conservative upper limit
- Simulate the effect of all possible combinations of ± 2% shifts in all bandpasses
 - \rightarrow worst case scenario is $\Delta r = 8.4 \pm 5 \times 10^{-4}$
- Add nuisance parameters in COSMOMC to marginalise over bandpass error $\rightarrow \Delta r = 3 \times 10^{-5}$

Outline

- I. The BICEP/Keck program
 II. BK18 analysis and results

 A. From time-stream to maps
 B. Multi-component likelihood analysis and results
 - C.Data checks and systematics

III.Beyond BK18

IV.Other analysis

What limits **BK18**?

- BK18 mainline simulations with dust and lensing give $\sigma(r)=0.009$
- Running without foreground parameters on simulations where the dust amplitude is set to zero gives $\sigma(r)=0.007$

We have correctly tuned the relative sensitivity of the 95/150/220 bands such that we don't suffer much penalty due to the presence of foregrounds - but we can do better!

• Running on simulations which contain no lensing gives $\sigma(r)=0.004$

The sample variance of the achromatic lensing foreground is a major limiting factor - we need delensing via high resolution measurements.

• Running without foreground parameters on simulations which have neither dust or lensing gives $\sigma(r)=0.002$

Delensing

1. Use ϕ to lens E-mode map to get expected lensing B template

2. From lensing B template, one can then measure its auto- and cross-spectra and constraint the lensing contribution to the B-mode spectrum measurement.

The BICEP/Keck Collaboration

41

Kimmy Wu, SLAC

Lensing template inputs

Cosmic infrared background map from Planck as $\boldsymbol{\phi}$

E modes: combine Q/U maps from BICEP/Keck 150GHz, SPTpol 150GHz, and *Planck* 143GHz

Cover broader multipole range than BK

r posterior with and without delensing

The 95% upper limit for BK14 is reduced from r<0.09 to r<0.082

First demonstration of $\sigma(r)$ reduction through delensing \rightarrow pave a way for beyond BK18 analyses!

Delensing forecasts

BICEP Array

4 wide-field, BICEP3-like receivers

- 30/40 GHz deployed during 2019/20 season
- 95 GHz
- 150 GHz
- 220/270 GHz

30 000+ detectors when fully deployed!

First year BA1 40GHz temperature map

CMB temperature anisotropies from first year of observation

Re-observed Planck 44GHz

CMB temperature anisotropies from Planck LFI 4-year

Outline

- I. The BICEP/Keck program
 II. BK18 analysis and results

 A. From time-stream to maps
 B. Multi-component likelihood analysis and results
 - C.Data checks and systematics
- III.Beyond BK18
- **IV.Other analysis**

Axion oscillations

Local axion-like dark matter produces time-variability in CMB polarization

• Fedderke, Graham, Rajendran, 2019

Masses 1e-23 - 1e-18 eV \rightarrow periods of hours to years

"AC oscillation"

- 1. All-sky coherent oscillation of CMB polarization with frequency $m/(2\pi)$
- 2. Sensitive to local axion field
- 3. Form of direct detection

Limits on axion-photon coupling constant

Method and first demonstrations

- "BICEP / Keck Array XII: Constraints on axion-like polarization oscillations in the cosmic microwave background" (arXiv:2011.03483)
- Improved constraints (arXiv:2108.03316) under review

Oscillation sensitive to $g_{\phi\gamma}\phi_0$ Axion-photon coupling constant Local axion field amplitude today Limits scale as $g_{\phi\gamma}\propto m_{\phi}$

total CMB dataset already on disk

Other on-going analysis projects

Polarisation angle calibration

- High-precision calibration of individual detector polarisation angles using a Rotating Polarised Source
- Constraints on isotropic cosmic birefringence

Line-of-sight distortion fields

- Use EB and TB quadratic estimators to reconstruct various distortion fields
- Both systematics check and probe for astrophysical and cosmological effects

Stay tuned for more incoming results and publications!

Conclusion

BICEP/Keck currently lead the field in the quest to detect or set limits on inflationary gravitational waves

- Sensitivity
- Control of systematics at degree angular scales

Adding 2016-18 data (from BK15 to BK18)

- r_{0.05}<0.07 to r_{0.05}<0.036
- σ(r)=0.02 to σ(r)=0.009
- For the first time no priors from other regions of sky

And we can keep going!

- BICEP Array mount and first receiver running
- Delensing in conjunction with SPT3G
- + other analysis!

Thank you!

Thanks a lot to Colin Bischoff, Ari Cukierman, Clem Pryke, Tyler St. Germaine and Kimmy Wu for providing materials for some slides

X

References

- BICEP / Keck XIII: Improved Constraints on Primordial Gravitational Waves using Planck, WMAP, and BICEP/Keck Observations through the 2018 Observing Season
- BICEP / Keck XV: The BICEP3 CMB Polarimeter and the First Three Year
 Data Set
- BICEP2 / Keck Array XI: Beam Characterization and Temperature-to-Polarization Leakage in the BK15 Dataset
- <u>BK + SPT: A Demonstration of Improved Constraints on Primordial</u> <u>Gravitational Waves with Delensing</u>
- <u>BICEP / Keck XII: Constraints on axion-like polarization oscillations in the cosmic microwave background</u> + <u>BK XIV Improved constraints</u>
- Polarization Calibration of the BICEP3 CMB polarimeter at the South Pole
- <u>Systematics diagnostics and self-calibration of CMB B-mode with</u> <u>distortion fields</u>
- <u>Receiver development for BICEP Array, a next-generation CMB</u> polarimeter a the South Pole
- Design and performance of the first BICEP Array receiver