

PERFORMANCES OF RESISTIVE MICROMEGAS FOR THE T2K ND280 UPGRADE

Sergey Suvorov on behalf of the ND280 upgrade team

IRN Neutrino 02.12.2021

ACCELERATOR NEUTRINO EXPERIMENTS

- Accelerator ν experiments:
 - precisely controlled pure $\stackrel{(-)}{\nu}_{\mu}$ beam
 - allow to study:
 - appearance (ν_e) & disappearance (ν_μ) channel
 - neutrino & anti-neutrino oscillations
- Beam production:

CP violation measurements

ND280 UPGRADE MOTIVATION

• T2K was approved to collect 20×10^{21} protons on target stat. (T2K-II stage)

- Now we are limited by statistics
- For T2K-II systematic is critical for search for CPV
 - CPV sensitivity with current and improved systematics vs statistics

$$P(v_{\mu} \rightarrow v_{e}) \approx \sin^{2}\theta_{23} \sin^{2}\theta_{13} \sin^{2}\frac{\Delta m_{32}^{2}L}{4E_{v}}$$
$$-\sin 2\theta_{12} \sin 2\theta_{13} \cos \theta_{13} \sin \delta \sin^{2}\frac{\Delta m_{32}^{2}L}{4E_{v}} \sin \frac{\Delta m_{21}^{2}L}{4E_{v}}$$

e-like candidate observed: **16** in $\overline{\nu}$ -mode and **109** in ν -mode

T2K SYSTEMATIC IMPROVEMENTS

- Oscillation analysis systematic is dominated by the ν interaction models uncertainties
 - Precise measurements are complicated because of poorly studied nuclear effects

- Example: Neutrino energy reconstruction in Super-Kamiokande:
 - Charge Current Quasi Elastic (CCQE) interaction on the nucleon at rest is assumed
 - E_{ν} is reconstructed based on the lepton kinematics only

$$E_{\nu} = \frac{m_p^2 - (m_n - E_b)^2 - m_{\mu}^2 + 2(m_n - E_b)E_{\mu}}{2(m_n - E_b - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

- To perform more precise measurements of ν interaction:
 - new detector configuration
 - new analysis technique

Benefits of the including nuclear information over QE assumption

ND UPGRADE CONCEPT

- Near detector upgrade project was started aiming:
 - full phase space coverage
 - -> same angular acceptance as far detector
 - Iower thresholds for muon, pion, proton
 - neutron detection from $\overline{\nu}$ interactions
 - e/ γ conversion separation (ν_e measurements)

- A novel highly segmented scintillator detector
- Two new TPCs with resistive anode
- 6 time of flights panels around new sub-detectors

NEW SCINTILLATOR DETECTOR (SUPER FGD)

A novel detector made from scintillator cubes

- ► 1x1x1 cm³ cube
 - Iow energy thresholds
 - high spatial resolution
 - ▶ 3D reconstruction

Unique for scintillator detector!

- fully active plastic detector -> no track distortions
- Prototypes were tested at CERN (2017, 2018) and at LANL
 - e, μ, π beam at CERN (<u>NIMA 936 (2018)</u>, <u>JINST 15, 12 (2020)</u>)
 - Neutron beam at LANL
- The detector performance was measured:
 - Light yield ~50 p.e. per channel (150 p.e. per cube)
 - $\sigma_t \approx 1 \ ns$ per channel

Scintillator cubes are fully produced and awaits for integration!

NEW TIME PROJECTION CHAMBERS

- High angle tracks from the target are tracked with 2 new TPCs
 - Iow material budget -> minimal track distortion at SFGD-TPC passage
 - Resistive MicroMegas (MM) modules significantly improve spatial resolution keeping pad size the same
- A resistive layer on top of sensitive pads
 - charge spreading -> avalanche position is reconstructed based on information from several pads --> gain accuracy
 - charge measurements are correlated --> concerns about dE/dx resolution

RESISTIVE TPC TESTS

- Several prototypes of the TPC with resistive anode were tested in:
 - CERN 2018 (<u>10.1016/j.nima.2019.163286</u>)
 - DESY 2020 (<u>arXiv:2106.12634</u>)
 - DESY 2021 (plots in the current talk)
 - Large drift distance up to 1m
 - 0.2 T magnetic field
 - CERN November 2021
- > The main goals of the tests are:
 - Setup stability tests
 - Spatial resolution
 - dE/dx resolution
 - Charge spread uniformity

TRACK POSITION RECONSTRUCTION

- Track position was reconstructed with Pad Response Function (PRF) method
- PRF describes charge fraction $Q_{pad}/Q_{cluster}$ over the track position w.r.t. pad
- The prior position estimation is based on barycentrical method (Centre of charge)

INCLINED TRACKS

- The reconstruction method is based on definition of the "cluster"
 - Inclined tracks are challenging for "cluster" definition
- Example:
 - considering column as a cluster for the inclined track will result in superposing many charge depositions
 –> can bias the reconstructed position
- Different "cluster" pattern was considered for the inclined tracks
 - Extract only transversal component of the charge spreading

RESISTIVE TPC SPATIAL RESOLUTION

- The PRF method improves the performance over Centre of Charge
- The resistive TPCs are proved to provide better spatial resolution keeping pad size the same

RESISTIVE TPC DE/DX RESOLUTION

- dE/dx measurements needs to be adapted for the resistive Micromegas
- The standard approach:
 - Charge in the pad is determined with maximum of the waveform
 - Charge in cluster (e.g. column) is summed up
 - Truncated mean is applied to extract average dE/dx and suppress spikes in energy deposition

- Using the sum of the WFs in cluster was proved to provide a better dE/dx resolution
 - Spread because of the diffusion is included
 - Spread because of resistivity is suppressed

3000

2500

2000

1500

3500

3000 2500

2000

1500

1000

1000

Waveforms

RC MAP

> By comparing signal in leading pad and neighbours the RC value was measured

$$A(t) = A_{peak} \times \exp\left(-\exp\left(t - t_{peak} - a\right)/\tau_1\right) \times \exp\left((t - t_{peak})/\tau_1\right) \times \sin\left((t - t_{peak})/\tau_2\right)$$
$$Q_{pad}(t) = \frac{Q}{4} \left[erf\left(\frac{x_{high} - x_0}{2\sigma(t)}\right) - erf\left(\frac{x_{low} - x_0}{2\sigma(t)}\right) \right] \left[erf\left(\frac{y_{high} - y_0}{2\sigma(t)}\right) - erf\left(\frac{y_{low} - y_0}{2\sigma(t)}\right) \right] \qquad \sigma(t) = \sqrt{\frac{2t}{RC}}$$

- Leading pad affected only by electronics A(t)
- Neighbours convolutes charge spreading with electronics $Q_{pad} \times A(t)$
- RC map was obtained from fit the equations above
 - y_0 was obtained with Pad Response Function (PRF)

RC(ns/mm2) map from simple method

SIMULATION

Cluster:

 Q_1, t_1

 Q_2, t_2

 $WF(t) = Q(t) \circledast \frac{dE}{dt}(t)$

- > The resistive foil effect can be approximated with RC chain, thus the charge spread is following the solution of diffusion equation
- To estimate charge in the pad Q(t) the integration over pad size is done

1000

Q

0.7 -0.6 0.5

0.4 -

0.3 -

2000

$$\frac{1}{2}\pi\left(\mathrm{Erf}\left[\frac{\sqrt{RC}\ x\mathbf{1}}{2\ \sqrt{t}}\right] - \mathrm{Erf}\left[\frac{\sqrt{RC}\ x\mathbf{2}}{2\ \sqrt{t}}\right]\right)\left(\mathrm{Erf}\left[\frac{\sqrt{RC}\ y\mathbf{1}}{2\ \sqrt{t}}\right] - \mathrm{Erf}\left[\frac{\sqrt{RC}\ y\mathbf{2}}{2\ \sqrt{t}}\right]\right)$$

SIMULATION VALIDATION

Spatial resolution:

SUMMARY

- Precise measurements of CP-violation in T2K experiment requires significant systematics reduction
 - Near detector upgrade program aims to reduce uncertainties in oscillation measurements 5% –> 3%

TPC with resistive Micromegas R&D is finished and the production is ongoing

- Various beam tests were performed
 - Gain in detector capabilities was proved
- MC model of the detector was developed and validated with data
- The physics requirements for T2K physics is met:
 - < 9% dE/dx resolution for 1 module (< 6% for 2 modules)</p>
 - < 800 um Spatial resolution (< 10% @ 1 GeV momentum resolution)</p>

Detector assembly and commissioning at JPARC is scheduled in 2022

BACK UP

T2K COLLABORATION

\sim 500 members, 68 Institutes, 12 countries

Canada TRIUMF

U. Regina U. Toronto U. Victoria U. Winnipeg York U.

CERN

France

CEA Saclay LLR E. Poly. LPNHE Paris

Germany

RWTH Aachen

Italy INFN, U. Bari INFN, U. Napoli INFN, U. Padova INFN, U. Roma Japan **ICRR** Kamioka **ICRR RCCN** Kavli IPMU KEK Kobe U. Kyoto U. Miyagi U. Edu. Okayama U. Osaka City U. Tokyo Institute Tech Tokyo Metropolitan U. Tokyo U of Science U. Tokyo Yokohama National U.

Poland IFJ PAN, Cracow NCBJ, Warsaw U. Silesia, Katowice U. Warsaw Warsaw U. T. Wroclaw U.

INR

Spain IFAE, Barcelona IFIC, Valencia U. Autonoma Madrid

(2019)

Switzerland ETH Zurich U. Bern U. Geneva

United Kingdom

Imperial C. London Lancaster U. Oxford U. Queen Mary U. L. Royal Holloway U.L. STFC/Daresbury STFC/RAL U. Glasgow U. Liverpool U. Sheffield U. Warwick

Boston U. Colorado S. U. Duke U. U. Houston Louisiana State U. Michigan S.U. SLAC Stony Brook U. U. C. Irvine U. Colorado U. Pennsylvania

USA

- U. Pittsburgh
- U. Rochester
- U. Washington

Vietnam IFIRSE