Combined sensitivity of JUNO and KM3NeT/ORCA to the neutrino mass ordering

IRN Neutrino meeting December 1-2 2021

Chau Thien Nhan

Laboratoire AstroParticule et Cosmologie

The KM3NeT/ORCA detector

- ORCA: Oscillation Research with Cosmic in the Abyss
- Optimized for atmospheric neutrino measurement above 1 GeV.
- 10 DUs deployed and in operation.

The KM3NeT/ORCA detector

- Neutrino Mass Ordering (NMO) determination thanks to matter effect.
- Relevant oscillation parameters: θ_{23} , Δm_{31}^2 , θ_{13} , δ_{CP} .

Event distributions in ORCA:

JUNO

- JUNO: The Jiangmen Underground Neutrino Observatory.
- Reactor neutrinos at medium baseline (~53 km).
- The Yangjiang NPP is already fully operational with 6 reactors and Taishan NPP has already 2 reactors in operation.

JUNO

• NMO determination thanks to the interplay between fast oscillations driven by Δm_{31}^2 and Δm_{32}^2

Require very good energy resolution $(3\%/\sqrt{E/\text{MeV}})$ Relevant oscillation parameters θ_{12} , Δm_{21}^2 , θ_{13} , Δm_{31}^2

JUNO and ORCA Combination

• A combination of reactor (JUNO) and atmospheric experiments (ORCA) could yield a boost in NMO sensitivity when assuming wrong ordering:

• Collaborative work between APC (ORCA) and IPHC (JUNO) → recently submitted paper[1]

[1] arXiv:2108.06293 - Combined sensitivity of JUNO and KM3NeT/ORCA to the neutrino mass ordering

Combination Strategy

- χ^2 minimization of Asimov dataset.
- True parameter from global fit NuFIT4.1.
- Combination on Δm_{31}^2 and θ_{13} using a scanned grid: ullet

 $\chi^{2}(\Delta m_{31}^{2},\theta_{13}) = \chi^{2}_{\text{JUNO}}(\Delta m_{31}^{2},\theta_{13}) + \chi^{2}_{\text{ORCA}}(\Delta m_{31}^{2},\theta_{13}) + \frac{(\sin^{2}\theta_{13} - \sin^{2}\theta_{13}^{GF})^{2}}{2}$

 $\sigma^2_{\sin^2 heta}_{ heta^{GF}_{13}}$

Constrains from current global fit

Osc. parameter	JUNO	ORCA	
θ_{13}	grid scan		
Δm_{31}^2	grid scan		
θ_{23}	Х	fitted	
Δm^2_{21}	fitted	fixed	
θ_{12}	fixed	fixed	
$\delta_{ m CP}$	Х	fitted	

Systematics for ORCA

[4] J.Phys.G 43 (2016) 8, 084001 - Letter of intent for KM3NeT 2.0

Systematics for ORCA

• Optimistic approach: with similar set of systematics as in the previous work of JUNO/PINGU/IceCube Upgrade combination [3]

[3] 10.1103/PhysRevD.101.032006 - Combined sensitivity to the neutrino mass ordering with JUNO, the IceCube Upgrade, and PINGU

Synergy effect – 6 years of data taking

ORCA (blue), JUNO (red), Combination (green)

Livetime evolution of the sensitivity

With the combined analysis

- Time required for 5σ is reduced by at least one year compared to ORCA alone.
- 5σ significance within 2/6 years in case of true NO/IO respectively.

θ_{23} dependence, 6 years of data taking

- θ_{23} dependence driven by ORCA sensitivity
- The combination ensures 5σ after 6 years regardless of the true value of $\theta^{}_{_{23}}$ and the true NMO

Energy resolution in JUNO

Small impact of JUNO energy resolution on the combined analysis.

The boost relies on the tension of Δm_{31}^2 rather than NMO sensitivity of each experiment.

Conclusions

- The tension in the best fit values of Δm_{31}^2 boosts the NMO sensitivity in a joint fit between JUNO and KM3NeT/ORCA.
- 5σ can be reached after 6 years of combination of JUNO and ORCA regardless of the NMO and octant scenarios.
- Detector energy scale is an important systematic for neutrino telescopes, with potentially large effects on the combined sensitivity.

Back up

JUNO systematics

		De elemente d	Rate	Uncertainty on	
Parameter	Uncertainty	Background	(/day)	rate	shape
Correlated reactor error	2.0%	Cosmogenic	1.6	20%	10%
Uncorrelated reactor error	0.8%	Geo-neutrino	1.1	30%	5%
Reactor spectrum	1.0%	Accidental	0.9	1%	0%
Detector response	1.0%	Fast neutrons	0.1	100%	20%
		$^{13}\mathrm{C}(\alpha,\mathrm{n})^{16}\mathrm{O}$	0.05	50%	50%

ORCA Systematics

Parameter PID-class norm. factors Effective area scale Detector energy scale Flux energy scale Flux $\nu_e/\bar{\nu}_e$ skew Flux $\nu_{\mu}/\bar{\nu}_{\mu}$ skew Flux $\nu_e/\bar{\nu}_\mu$ skew Flux spectral index NC normalization

Baseline scenario	Optimistic scenario			
free	×			
×	10% prior			
5% prior	×			
×	10% prior			
7% prior				
5% prior				
2% prior				
free				
10% prior				

Δm^2_{31} dependence, 6 years data taking

10-core scenario in JUNO

JUNO 8 cores (solid), JUNO 10 cores (dashed)