

T2K latest oscillation results and SK-T2K joint analysis

Adrien Blanchet on behalf of the T2K Collaboration

IRN Neutrino meeting

The 2nd of December - 2021

Measuring oscillation parameters

arXiv:2006.11237

2020's Picture of the PMNS paradigm

			-
parameter	best fit $\pm 1\sigma$	3σ range	1σ relat.
$\Delta m_{21}^2 \ [10^{-5} \text{eV}^2]$	$7.50^{+0.22}_{-0.20}$	6.94 – 8.14	2.7%
$ \Delta m_{31}^2 [10^{-3} \text{eV}^2] \text{ (NO)}$ $ \Delta m_{31}^2 [10^{-3} \text{eV}^2] \text{ (IO)}$	$2.56^{+0.03}_{-0.04}$ 2.46 ± 0.03	2.46-2.65 $2.37-2.55$	1.2%
$\sin^2 \theta_{12} / 10^{-1}$	3.18 ± 0.16	2.71 – 3.70	5.2%
$\sin^2 \theta_{23} / 10^{-1} \text{ (NO)}$ $\sin^2 \theta_{23} / 10^{-1} \text{ (IO)}$	$5.66^{+0.16}_{-0.22}$ $5.66^{+0.18}_{-0.23}$	4.41–6.09 4.46–6.09	4.9%
$\sin^2 \theta_{13} / 10^{-2} \text{ (NO)}$ $\sin^2 \theta_{13} / 10^{-2} \text{ (IO)}$	$2.225_{-0.078}^{+0.055} 2.250_{-0.076}^{+0.056}$	2.015–2.417 2.039–2.441	3.0%
$\frac{\delta}{\pi}$ (NO) $\frac{\delta}{\pi}$ (IO)			

Most of the parameters measured with < 5% precision

 θ_{23} is known with 5% precision

Remaining parameters are δ_{CP} and the mass ordering

Measuring oscillation parameters

arXiv:2006.11237

2020's Picture of the PMNS paradigm

parameter	best fit $\pm 1\sigma$	3σ range	1σ relat.
$\Delta m_{21}^2 \ [10^{-5} \text{eV}^2]$	$7.50^{+0.22}_{-0.20}$	6.94-8.14	2.7%
$ \Delta m_{31}^2 [10^{-3} \text{eV}^2] \text{ (NO)}$ $ \Delta m_{31}^2 [10^{-3} \text{eV}^2] \text{ (IO)}$	$2.56^{+0.03}_{-0.04}$ 2.46 ± 0.03	2.46 – 2.65 $2.37 – 2.55$	1.2%
$\sin^2 \theta_{12} / 10^{-1}$	3.18 ± 0.16	2.71 – 3.70	5.2%
$\sin^2 \theta_{23} / 10^{-1} \text{ (NO)}$ $\sin^2 \theta_{23} / 10^{-1} \text{ (IO)}$	$5.66^{+0.16}_{-0.22}$ $5.66^{+0.18}_{-0.23}$	4.41–6.09 4.46–6.09	4.9%
$\sin^2 \theta_{13} / 10^{-2} \text{ (NO)}$ $\sin^2 \theta_{13} / 10^{-2} \text{ (IO)}$	$2.225_{-0.078}^{+0.055} 2.250_{-0.076}^{+0.056}$	2.015–2.417 2.039–2.441	3.0%
$\frac{\delta/\pi \text{ (NO)}}{\delta/\pi \text{ (IO)}}$?	

Need to measure oscillation for **both neutrino and antineutrino** to probe the CP violation parameter.

Accessible with

The T2K experiment: Tokai to Kamioka T2

The near detectors

The near detector: ND280

- Same off-axis angle as Super-Kamiokande (2.5 degrees).
- Measure v_μ and v_e spectrum before the oscillation → TPCs + FGDs
- Measure background processes to oscillation (NCπ⁰, NC1π, CC1π...)
- Compare Carbon and Oxygen interactions (FGD2 and P0D)

SMRD (Side Muon Range Detector) scintillator planes in magnet yokes. Measure high angle

muons

P₀D

(π⁰ detector)

The far detector: Super-Kamiokande

Particle identification

Interaction vertex reconstruction

Track Multiplicity

Particle direction

momentum reconstruction (through range)

Data taking

ND280 analysis procedure

Feeding models for SK oscillation fit.

Flux systematics

Flux predictions based on NA61/SHINE measurements + beam monitoring.

Forward Horn Current (FHC)

Reverse Horn Current (RHC)

Neutrino-nucleus interaction models

- Neutrino energy reconstruction formula based on the CCQE reaction (w/ lepton kinematics). For other interaction modes, this formula is not suited
- At T2K energies interaction modes are:
 - CCQE (most dominant type),
 - Multi-nucleon interactions (2p-2h),
 - Resonant pion production (RES) with one pion in final state,
 - Deep Inelastic Scattering (DIS) with other particles in final state.
- NEUT (5.4.0) event generator used for neutrino simulations.
- Cross-section uncertainties are propagated on spectra with nuisance parameters.

Parameter fit with ND280 data

Neutrino datasets split in 18 samples based on the event topology and beam state:

Beam Mode	Neutrino Target	Topology
FHC / RHC / RHC- neutrino background	FGD1 / FGD2	CC0Pi / CC1Pi / CCOthers

Systematics on the far detector samples:

Sample	FHC 1Rµ	RHC 1Rµ	FHC 1Re	RHC 1Re	FHC 1Re1de
Flux+Cross section (before ND)	11.1%	11.3%	13.0%	12.1%	18.7%
Flux+Cross section (after ND)	3.0%	4.0%	4.7%	5.9%	14.3%

SK data samples

1Re1De (CC1π)

No CC1 π sample in antineutrino mode because π^- produced in $\bar{\nu}$ interaction are mostly absorbed before decay.

Oscillation results

World-leading measurement of atmospheric parameters: compatibility with maximal $\sin^2 2\theta_{atm}$ mixing and slight preference to the upper octant.

Robustness studies performed showed a small bias on Δm^2_{23} which has been added as an additional uncertainty.

 θ_{13} consistent with the constraint from reactor experiments.

With reactor constrains, results are pointing toward a maximal CP violation.

δ_{CP} measurement

More than 40% of δ_{CP} values are excluded at $> 3\sigma$.

CP conservation scenario (0 and π) excluded at 90% C.L.

Slight preference for the Normal Ordering (NO).

Last year results from T2K made the cover of Nature! (Including run1 to run9)

Comparing with NOvA

Mass Ordering (MO) sensitivity comes from change of sign in term dominated by matter effects:

the longer the baseline → the larger the term.

- T2K: clean δ_{CP} measurement with small MO sensitivity.
- NOvA: degenerate δ_{CP} and MO:

$$\{\delta_{CP} = 3\pi/2\} + IO \Leftrightarrow \{\delta_{CP} = \pi/2\} + NO$$

Comparing with NOvA

No strong MO preference with NOvA

- Also pointing toward $\delta_{CP}=3\pi/2$, but if IO is assumed...
- But largely compatible with CP conservation if NO

Mild tension between T2K and NOvA

- Both fit still dominated by statistic uncertainties at the far detector
- T2K-NOvA: very different detectors → very different analysis and treatment of systematics

Solving the tension?

- Accumulate more statistics: T2K-II / LBL program (Hyper Kamiokande, DUNE)
- Perform joint-fits: combining datasets and analysis methods

Why making a joint-fit?

Combining constraints from different analysis

- Sensitivity boost expected thanks to the increased statistics and with involved fit parameters
- Same oscillation parameters + potentially correlated cross-section systematics and detector systematics
- Ability to resolve parameter degeneracy with the two datasets → Increase in sensitivity

Example with SK atmospheric neutrinos

- Use sub-GeV + multi-GeV atmospheric neutrino sample
- Great decoupling between δ_{CP} and Mass Ordering (MO)
- However: MO highly dependent on $\sin^2{(2\theta_{atm})}...$
- ... for which the world leading measurement is carried by T2K!

Multi-GeV Neutrino
Better sensitivity in MO

SK + T2K combined analysis

Improved predictions with the joint analysis:

$$\left\{ \begin{array}{l}
\text{Observed} \\
\text{event rate}
\end{array} \right\} = \left\{ \begin{array}{l}
\nu \text{ Flux} \\
\text{models}
\end{array} \right\} \times \left\{ \begin{array}{l}
\nu \text{ cross-section} \\
\text{models}
\end{array} \right\} \times \left\{ \begin{array}{l}
\text{SK detector} \\
\text{model}
\end{array} \right\}$$

- SK flux prediction: tuning Honda flux (i.e. BESS&AMS data) + μ^{\pm} flux measurements with T2K hadronic models
- ν interaction models partially unified: same NEUT (MC) + applying ND280 constraints on sub-GeV atmospherics
- SK detector systematics: correlate the reconstruction errors in both samples

Preliminary sensitivity studies

Preliminary improvements

- Marginal difference between naïve sum in sensitivity to $\sin^2(2\theta_{23})$
- Increased sensitivity to MH away from maximal mixing in True NO
- Slight sensitivity increase for joint fit over naïve sum to δ_{CP} while assuming maximal CP violation (close to T2K best-fit)
 - (remember that data constraints exceed sensitivities in T2K)

→ Additional correlations are being study

Stay tuned!

Combined analysis with Hyper Kamiokande

Joint analysis will also be very important for the next generation

- Depending on the θ_{23} octant \rightarrow sensitivity boost of more than 1σ for MO
- With a known MO, better rejection of the CP-conservation scenario

	$\sin^2 \theta_{23}$	Atmospheric neutrino	Atm + Beam
Mass	0.40	2.2 σ	→ 3.8 σ
ordering	0.60	4.9 σ	→ 6.2 σ
$\overline{\theta_{23}}$	0.45	2.2 σ	→ 6.2 σ
octant	0.55	1.6 σ	→ 3.6 σ

10 years with 1.3MW, normal mass ordering is assumed

Ongoing plans for T2K

T2K phase II is planned for 2022

- Upgraded ND280 with new detectors:
 - A new neutrino target: Super-Fine Grained Detector
 - Two new trackers: High-Angle TPCs
 - Surrounding Time of Flight detector
- Will allow to probe unreached phase-space with the current detectors.
- Measurement of the transverse kinematic imbalance for unprecedented constrains on cross-section models.
- Progressive upgrade of the neutrino beam line from 750kW to finally reach 1.3MW.

T2K measurements are important for Hyper-Kamiokande, DUNE, NOvA and atmospheric neutrino oscillations.

Summary and ongoing plans for T2K

T2K has achieved world-leading measurement of neutrino oscillation parameters

- CP-conservation excluded at 90% C.L.
- Most precise measurement of the atmospheric oscillation parameters.
- Slight preference for normal ordering and upper octant of $\sin^2\theta_{23}$.

Exciting analyses coming from T2K

- Joint-fit with SK atmospheric neutrinos.
- Joint-fit with NovA experiment.
- Improved oscillation analysis with new ND280 samples.
- New cross-section studies across different off-axis angles with WAGASCI and BabyMIND near detectors.

Thank you!

