Recent results of the SoLid

experiment

Noe Roy, on behalf of the SoLid collaboration

roy@lal.in2p3.fr

IRN neutrino 2021 2nd December SoLid

Outline

- The SoLid experiment
- Signal and backgrounds
- Energy calibration
- Antineutrino analysis
- Conclusion

Physics motivation

Oscillation anomalies:

- Reactor antineutrino anomaly (Short Baseline experiments)
- Gallium anomaly (GALLEX + SAGE)
- Accelerator anomaly (MiniBooNE + LSND)

The anomalies could be explaned with an oscillation into a light sterile state with an eV scale sterile neutrino.

Reactor anomalies:

- 5 MeV Bump
- Global deficit from ²³⁵U

Among the 4 main Isotopes of commercial reactors, (²³⁵U, ²³⁹Pu, ²³⁸U, ²⁴¹U), ²³⁵U could be a candidate as the primary responsible of those anomalies.

SoLid detector at SCK CEN

Experimental site specification:

- Based at BR2 research reactor (Mol, Belgium)
- Very short baseline experiment [6.5-9] m
- Low overburden (~6-8 m.w.e)

Reactor specification:

- ²³⁵U enriched reactor core (>93%)
- Compact reactor core ~50 cm
- Low background from the reactor.
- 1.5 month reactor ON/OFF (R-ON/R-OFF) cycles

BR2 - Belgian reactor 2

SoLid detector: detection technology

Inverse Beta Decay:

 $\overline{v}_e + p \rightarrow e^+ + n$

Double scintillation technology:

- Organic PVT as neutrino target and e⁺ energy measurement
- Inorganic ⁶LiF:ZnS(Ag) for neutron capture and detection

Time and space coincidence between e^{+} and n detection

High segmentation:

- 12800 5x5x5 cm³ PVT cubes with 2 ⁶LiF:ZnS(Ag) screens
- Each cube linked to 4 MPPCs with wavelength shifting fibres.

Challenges to overcome:

- Novel technology to understand and qualify.
- 12 800 detection cells with several parameters to measure per cube.
- Quantify and reduce the large correlated and accidental background
- Tag the gamma emission from **e**⁺ annihilation.

Correlated backgrounds

Atmospheric background:

Induced by cosmic ray interaction in the atmosphere

- → Proton recoil + neutron capture
- → Badly tagged muon + neutron capture
- ΔT (Delayed-Prompt) ~ 64 µs (= ΔT_{IBD})

BiPo background:

Induced by **internal radioactivity from ZnS layers** unexpected contamination or **external Radon decay.**

- \rightarrow β energy deposit from ²¹⁴Bi decay
- + delayed α from ²¹⁰Po decay

 ΔT (Delayed-Prompt) ~ 250 µs (> ΔT_{IBD})

Signal topologies

IBD expected electromagnetic signals: e⁺energy deposit + 2 annihilation gammas back to back

→ Two different strategies to classify the events:

Spatial clusters:

barycenter

Gamma 2 Half space

> Gamma 1 Half space

- \rightarrow Divide the detector in 2 hemispheres
- → Build 0, 1 or 2 gamma clusters

Cube inside the

most energetic cube

outside AC

Gamma 1 barycente (FM1)

Direct gamma tracking:

- → Track the annihilation gammas with a likelihood minimization algorithm based on x-sections
- → Build 0, 1 or 2 gamma tracks

Allow selection on the number of gamma tracks, energies of the gammas, positions...

Challenges:

- → Harder reconstruction of low energy events due to dark count rate and low efficiencies
- → Have a good understanding of the energy response of the detector, especially at low energy

Energy calibration performances

Extensive energy calibration work:

- → 12800 cube light yield measured with 3% variation within a plane.
- → Linearity of the energy response tested at a couple of percent in the [.5-4 MeV] region.

Data – Monte Carlo comparison

On ²²Na calibration data

- \rightarrow With 1.28 MeV gamma and with
- 2 annihilation gammas.
- \rightarrow Good agreement within 5%
- between ~150 keV and 1.2 MeV.

On BiPo data used as a proxy for IBD signal

With a high purity BiPo selection, the BiPo background can be used to test detector response model.

- \rightarrow Prompt energy agreement at the percent level up to 3 MeV.
- → The Data-Monte Carlo comparison show a good agreement at the percent level of the reconstruction variables.

Antineutrino analysis

BiPo background reduction and quantification

BiPonator: CNN for neutron signal identification between

- → 4.8 MeV 3 H+ α from 6 Li breakup
- → 7.8 MeV **α** from BiPo.

At 80% neutron efficiency, the CNN rejects 94% of alphas

- BiPonator used in combination with **Δ**T(delayed-prompt):
 - → For BiPo rejection
 - \rightarrow To define BiPo sideband for quantification of the BiPo rate

Atmospheric background quantification

- → Similar capture time for neutrons from IBD and atmospheric background.
- → No PSD between proton recoils and e⁺.
- → Energies of atmospheric background in the whole IBD energy region of interest ([1-7] MeV range).

No clear discrimination or selection variables to build a pure sideband in the energy range.

Dependent on the atmosphere density → Pressure model to quantify the rate variation of the atmospheric background To test it, selection on above 7 MeV energy deposits.

 $R - R_{ref}(RON/ROFF)$ as a function of $P - P_{ref}$ for both reactor ON and OFF

Variation of the neutron like signals induced by cosmic induced background variations.

IBD analysis: multivariate analyses

Uniform BDT (uBDT)

+ Spatial gamma clustering

 \rightarrow Ensures flatness of the efficiency on given parameters

TMVA Gradient BDT (GBDT)

+ gamma tracking

→ BDT based on gradient descent algorithm

Excess [event/dav]

2.5-

preliminary

3.0 c

0.0 20 40 60 80 100 120 140 160

preliminary

preliminar y

04 05

2-V

Signal (training sam

preliminar v

-0.6 -0.4 -0.2 0

Background (training cample

0.2 0.4 0.6 0.8

BDTGCat respons

Performances prediction obtained with IBD simulation and R-OFF data.

→ Similar performances for both analyses

Extraction of antineutrino signal: Open dataset (~1 month R-ON)

Subtraction:

- \rightarrow Select the signal ΔT vs Biponator neutron window
- → Subtract accidental component with false neutron triggers
- ightarrow Subtract BiPo component with the BiPo sideband

Left in the samples:

2

- \rightarrow R-ON: Atmospherics + IBDs
- \rightarrow R-OFF: Atmospherics

Compute the pressure model with both R-ON and R-OFF

Energy and distance distributions

- \rightarrow Use the R-OFF to extract each background shape.
- \rightarrow Quantify each background rate on R-ON data.

Subtraction of R-ON by the weighted sum of the background shapes.

Available dataset

Data on tape:

- → Two years of data (April 2018 July 2020)
- \rightarrow 14 R-ON cycles during this time
- \rightarrow Data selection with stable environmental conditions
- → Selected respectively ~300 days and ~180 days of R-ON and R-OFF data for an oscillation analysis

SoLid oscillation sensitivity

→ Rejection zones derived with Feldman-Cousins prescription.

→ Systematic uncertainties here related to the energy scale, neutron capture efficiency and detector acceptance. Dominated by statistical uncertainties for now.

→ Ongoing effort to assess impact of remaining systematics.

Future prospects

Future development: topological selection on only two gammas.

Based on the Spatial clusters topologies:

- → New analysis based on two gamma topology.
- \rightarrow Uses a better reconstruction that takes into account calibration effects.
- → Multivariate analysis to remove each background component.

Each R-ON component yield is obtained with a multi-dimensional **AT (Delayed-prompt)**, **AR (Delayed-prompt)** simultaneous fit.

→ Good agreement between excess and predicted excess, with S/B larger than one:

Future development: SoLid Phase-II upgrade

During summer 2020, upgrade of the detector with new MPPCs:

- → New MPPCs with lower x-talk for similar Over Voltage (OV)
- → Allows to operates at a larger OV → 40% light yield increase in the same conditions
- → Improved energy resolution
- → Expected improvement of the **annihilation gamma** reconstruction

Taking data with Phase-II detector since late 2020

- Detector technology to answer to the reactor antineutrinos anomaly.
- Highly segmented plastic scintillator detector (16x16x50 detection cells).
- Detector response well understood and modeled with extensive calibration work.
- IBD analysis based on MVA algorithms to reduce correlated background on open dataset (~1 month R-ON) → ~90 event/day, S/B =0.21
- Unblinding and analysis on 2 years data with an exclusion contour for Phase I dataset coming soon.

- Analysis based on pure signal 2-gamma events.
- Upgrade of the detector in summer 2020, currently taking data with 40% increased light yield.

Fibre calibration

False neutron trigger for accidentals

