SuperNEMO

Neutrinoless Double Beta Decay Experiment Demonstrator Commissioning Status Update

Malak HOBALLAH
On behalf of the SuperNEMO Collaboration
Dec 2, 2021

Neutrinoless Double Beta Decay: A Hypothetical Radioactive Process

Together with other observables (sum of neutrino masses constrained from cosmology or ν_e mass constrained from single-beta decay experiments), could bring information about the neutrinos absolute masses.

Neutrinoless Double Beta Decay: A Hypothetical Radioactive Process Signal

SuperNEMO: Tracker-Calorimeter Detector

SuperNEMO: The Physics

- Expected sensitivity: 17.5 kg.y exposure of 82Se
- Measure background contamination

$T_{1/2}^{0v} > 4 * 10^{24} y$ < m_v> < (260 - 500) meV (90% CL)

More physics:

0νββ Search:

- Different double beta decay mechanisms (Light Majorana neutrino, right handed currents, ...) using the full kinematics (single electron energy and angular distribution)

2νββ Study:

- Quenching of axial-vector coupling constant (gA)
- Higher State Dominance (HSD) and Single State Dominance (SSD)
- Exotic Decays (Majoron (n = 2, 3, 7), Lorentz violation and Bosonic neutrino)

The SuperNEMO Demonstrator Source

6.23 kg of 82**Se** as $\beta\beta$ source

$$Q_{\beta\beta}$$
 = 2.998 MeV $T_{1/2}^{2\nu}$ = 9.4 x 10¹⁹ y (NEMO-3)

Radio-Purity of 82Se foils	Specifications (μBq/kg)	Measured values for best source using BiPo-3 detector (μBq/kg)	
²⁰⁸ TI	< 2	~ 20 ± 10	
²¹⁴ Bi	< 10 •	< 290 at 90% CL	
Required for 500 kg.y exposure d (100 kg, 5 years)		For source of emonstrator of 17.5 kg.y exposure	

Selenium Source Foils Geometry

The SuperNEMO Tracker

2034 drift cells operating in Geiger mode

3D reconstruction of charged particle tracks $(\mu^{\pm}, e^{\pm}, \alpha)$

Over pressure of 10 mbar is achieved inside tracker chamber

	Specifications	Measurements can be extrapolated to a tracker gas flux of 2 m³/h
Radon emanation (mBq/m³)	0.15	0.16 ± 0.05

Already commissioned and data to be analyzed

The SuperNEMO Calorimeter

8" PMTs

Energy resolution 8% FWHM at 1 MeV (14% - 17% for NEMO-3)

Time resolution < 400 ps for electrons @ 1 MeV

Experiment	⁴⁰ K (Bq)	²²⁶ Ra (Bq)	²³² Th (Bq)
SuperNEMO Demonstrator	540	197	124
NEMO-3	832	302	49.4
Relative activity (A(SN)-A(NEMO-3))/A(NEMO-3)	-35%	-35%	+151%

712 Optical

Modules

Operational and taking data since 2018!

Not the dominant background for 2v and 0v search

SuperNEMO: Hardware Status

Iron shielding 20 cm

(~ Mid 2022)

Polyethylene water tanks and boron polyethylene plates

Magnetic field coils 25G

(Summer 2021)

Dec 2, 2021

Energy Calibration

Optical corrections were taken into account:

Non-Linear Effects with Energy:

- Birks Effect
- Cherenkov Effect

Geometrical Corrections:

- Interaction point

→ Obtain amplitude gain that will be used to adjust HV for each PM

Energy Calibration, First Results

Old results that do not take into account optical corrections

Time Resolution and Time Calibration of OMs Using 60Co Runs

1- **Time resolution:** Using parameters from time coincidences of several OMs, we can retrieve the time resolution per OM

Time resolution for \(\mathbb{Y} \mathbb{S} \) @ 1MeV for all OMs

For 8" OMs : 0.614 ± 0.002 (stat) + 0.064(sys) – 0.000(sys) [ns] For 5" OMs : 0.814 ± 0.006 (stat) + 0.073 (sys) – 0.000 (sys) [ns]

→ To be done with e⁻s

Time Calibration of OMs Using 60Co Runs

2- Time offset in each OM is unique per OM, it takes into account: cable length + total delays inside (electronics, scintillation time, ...)

Color scale: Final offset values / OM [ns]

Mean value of Δt distributions

The time calibration performed **achieved <~ 0.2 [ns] precision on timing** after applying the calibration. Enough to reject background using time of flight measurements.

Tracker Commissioning, September 2021

Tracker commissioned in stages due to the arrival of the tracker HV crates → 7 areas commissioned separately

Tracker Commissioning, Cathode Drift Time

Effect of neighbouring cell electric field

Conclusion

- The calorimeter is commissioned, working and taking data since 2018.
- The tracker is commissioned and taking data since September 2021 ->
 Data to be analyzed
- A time calibration of the calorimeter walls is done.
- Preliminary time resolution is extracted for \slash s @ 1 MeV \rightarrow To be done with e s using \slash 207Bi calibration source .
- Energy Calibration of the Calorimeter walls is done, improvements are being worked on.

Backup

Quenching of g_A

F.Šimkovic et al. Phys. Rev. C 97, 034315 (2018)

$$[T_{1/2}^{2\nu\beta\beta}]^{-1} \simeq (g_A^{eff})^4 [M_{GT-3}^{2\nu}]^2 \frac{1}{[\xi_{31}^{2\nu}]^2} (G_0^{2\nu} + \xi_{31}^{2\nu} G_2^{2\nu})$$

 $2\nu\beta\beta$ processes with different kinematics

Determines the contribution of G0 and G2

19

arXiv:1901.03871v1 [hep-ex] 12 Jan 2019

FIG. 3: Effective axial-vector coupling $\mathbf{g}_A^{\text{eff}}$ as a function of the matrix element $M_{GT-3}^{2\nu}$ for $^{136}\text{Xe}~2\nu\beta\beta$ decay. The yellow (light yellow) region $\xi_{31}^{2\nu}<0.26$ (0.05) is excluded by the present KamLAND-Zen measurement at 90% (1 σ) C.L. Nuclear shell model results are displayed by the blue circle (GCN interaction) and black square (MC). QRPA results are shown by the dashed orange (Argonne interaction) and dashed-dotted green (CD-Bonn) curves.