Feebly-Interacting Particles and (g - 2) anomalies

Luc Darmé IP2I – CNRS 16/11/2021

Based mostly on 2012.11150, 2105.04540 and 2111.xxxx

This work has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No 101028626

Outline

Introduction: Feebly Interacting Particles for (g - 2)

The MeV-regime: prospects of future resonant searches

The GeV regime: FIPs meddling in a_{μ}^{HVP}

Feebly-Interacting Particles and (g - 2)

- FIPs= "new neutral particle which interacts with the SM via suppressed new interactions"
 - \rightarrow We focus in this talk on FIPs from MeV to tens of GeV range
 - Used often as a NP mechanism for $(g-2)_{\mu,e}$ Gninenko 2001, Baek 2001, Ma 2001... Brodsky 1967...
 - Part of simultaneous explanation of $B \rightarrow K$ and/or DM and (g 2) A. Greljo 2021, Datta 2019, 2017, LD et al. 2020,2021.
- Anomalies in lepton magnetic moment are at a cross-road

Confused situation for $a_e = (g - 2)_e$

on the exp. side

$$\Delta a_e \equiv a_e^{\rm SM} - a_e = +(4.8 \pm 3.0) \cdot 10^{-13} \quad (\text{LKB} - 2020)$$

$$\Delta a_e \equiv a_e^{\rm SM} - a_e = -(8.7 \pm 3.6) \cdot 10^{-13} \quad \text{(Berkeley-2018)}$$

More tension between both exp. measurements than with the SM prediction ...

Two FIP examples ...

• An axion-like particle (ALP) a,

$$\mathcal{L} \subset \frac{1}{2} (\partial_{\mu} a) (\partial^{\mu} a) - \frac{1}{2} m_a^2 a^2 + \frac{1}{4} g_{a\gamma} a F_{\mu\nu} \tilde{F}^{\mu\nu} + \sum_{f=\ell,q} g_{af} m_f (a \, \bar{f} \, \gamma^5 f)$$

 \rightarrow We then "hide" the ALP via a coupling to a dark current

$$\mathcal{L} \supset \frac{g_{a\chi}}{2} (\partial_{\mu} a) \mathcal{J}^{\mu}_{5,D} \qquad \longrightarrow \qquad \text{Contains FIP/dark sector} \\ \text{interaction, can be large!}$$

- Same procedure can be applied to a light vector FIP V^{μ}

$$\begin{split} \mathcal{L} \supset -\frac{1}{4} V_{\mu\nu} V^{\mu\nu} + \frac{1}{2} M_V^2 V_\mu V^\mu + \frac{\epsilon}{2} V_{\mu\nu} F^{\mu\nu} + \sum_{f=\ell,q} g_{Vf} V_\mu \, \bar{f} \, \gamma^\mu f \\ + \, \text{a dark current coupling} \end{split}$$

 \rightarrow Covers standard cases: dark photon, $L_{\mu} - L_{\tau}$, etc...

+ light-by-light and 2loops lepton loop contributions

Going resonant on « radiative » electron-FIP interactions

Vector FIP limits: the universal case

- Previous experimental programs covered Δa_{μ} and Δa_{e} in "universal scenarios"
- However these limits are electrondriven

→For $(g - 2)_{\mu}$ only the muon coupling is really required

- Radiative corrections can reintroduce *e*⁻ coupling
 - E.g $L_{\mu} L_{\tau}$: kinetic mixing typically arises from SM fermions loop

 \rightarrow Can we probe such suppressed couplings at accelerators ?

Adapted from LD, F. Giacchino, E. Nardi, M. Raggi, 2012.07894

Resonant production for light (bosonic) FIPs

- In beam dumps, the most effective production mechanism is the resonant process $e^+e^- \rightarrow FIP$
 - \rightarrow Use e^+ beam with annihilation on the target's e^-

Detector

FIPS

Active

target

Single e^+

• Enormous gain in cross-section, to the cost of having to match the precise resonant energy $E_{\rm res} \equiv \frac{m_a^2}{2}$

Resonant production and production rates

How to get to the exact energy?

• Study models with large invisible width Γ_V^{inv} \rightarrow typical for dark photon with light dark matter where it decays invisibly with large rate. Vary the beam energy directly when possible

See e.g. 1802.04756

See e.g. 1802.03794, 2105.04540

- Use energy loss in the target to "scan" naturally various positron energies
 - → Charged particles in matter undergo "straggling", bremsstrahlung, etc ...
 - → Builds a secondary population of lower energy particles as part of the E-M shower initialisation
 - → Distinguishing the signal from background typically implies a cut to enforce e.g $E_{e^+} > E_{beam}/2$. Precise cut to be determined experimentally

Strong constraint on "secondary" electron coupling

- Showing production-only, 3events lines, PRELIMINARY
 - → POKER proposal, SPS-based 100, 50, 25, 2 GeV e^+ beam → JLab, 11 GeV e^+ beam → LNF, 0.5 GeV e^+ beam
- Several energy beams needed to cover parameter space
 - Significant coverage of radiatively-generated electron coupling!

→ Also covers light dark matter solutions, works for e.g. $L_{\mu} - L_{\tau}$

3-events line: production only

GeV-scale FIPs meddling with a_{μ}^{HVP}

LD, Grilli di Cortona, Nardi, Preliminary, 2111.xxxx

Discrepancies in the SM estimate a_{μ}^{HVP}

• We focus on a key ingredient of the data-driven approach: Hadronic Vacuum Polarisation component

 $a_{\mu}^{\rm LO,HVP} = 693.1 \pm 4.0 \cdot 10^{-10}$

- Currently three anomalies!
 - Latest lattice result do not agree with data-driven approach
 - Neither agree with the experimental value
 - Within the data driven, $\sim 3\sigma$ disagreement between the two main exp. contributions

..And with the au hadronic decay data

Shifting a_{μ}^{HVP} from luminosity measurements

• Use the optical theorem to deal with the loop

 $a_{\mu}^{\text{LO,HVP}} = \frac{1}{4\pi^3} \int_{s_{\text{th}}}^{\infty} ds \, K(s) \sigma_{\text{had}}(s)$ All the data goes in here, the $e^+e^- \rightarrow hadrons(\gamma)$ bare cross-section

- The absolute cross-section is required \rightarrow so the luminosity estimate is critical
 - The luminosities in KLOE and BaBar are measured via Bhabha scattering $e^+e^- \rightarrow e^+e^-$ at large angles
 - We can mimick efficiently this process via $e^+e^- \rightarrow V \rightarrow e^+e^-$. For instance, let's assume a FIP near the KLOE CoM energy $M_V \sim \sqrt{S_{KLOE}} \sim M_{\phi}$

KLOE reported a given number of Bhabha-like events $N \propto \sigma \times L_{KLOE}$ If the luminosity is smaller, then larger hadronic CS $N \propto \sigma \times L_{KLOE}$

Requires tuning, but actually works!

• Resonant FIP production at KLOE is required

→ Around 2/3 of Δa_{μ} from NP loop and 1/3 from this effect

- Solve in one go all tensions in Δa_{μ} -related observables !
 - → Lattice vs Data-driven, theory vs experiment, KLOE vs BaBar
- Large kinetic mixing required however

Stealthy dark photons

• Use « inelastic dark matter scenario » to avoid bounds on dark photons

• Semi-visible signatures are difficult experimental target. E.g in BaBar:

→ Visible type searches do not include missing energy

→ Invisible decay/mono-photon cut on the e^+e^- decay products

• Target for Belle-II !

Mohlabeng 2019, Duer 2019, Duer 2020, Laura Zani's talk

ω

Tuning required as expected from resonant production at KLOE

LD, Grilli di Cortona, Nardi, Preliminary, 2111.xxxx

*Via dark Higgs secluded annihilation, the dark Higgs is required in this scenario in any case

Conclusion

Conclusion

• Flavoured FIPs have been long used to fit various "precision anomalies"

→ Flavour-dependent FIPs are still a viable solutions to provide a fit $(g - 2)_{e/\mu}$ experimental results and provide additional interesting effects

- Next generation of precision beam dump experiments could be sensitive to suppressed radiatively-generated e^-/e^+ couplings from "standard" $(g-2)_{\mu}$ solutions
 - \rightarrow Promising resonant-based strategies
- For FIPs in the GeV mass range, more exotic effects on $(g 2)_{\mu}$ can arise \rightarrow A FIP around the KLOE CoM energy could solve in one go all tensions in Δa_{μ} -related observables !

Backup

Fitting the anomalies, couplings to muons

- At small FIP masses, $(g-2)_{\mu}$ anomaly typically requires small couplings to muons to avoid "overshooting"

$$\sqrt{g_{V\mu}^2 - 5\,g_{A\mu}^2} \sim 0.05\,\left(rac{1\,{
m GeV}}{M_V}
ight)$$
 around the GeV

Saturation when $m_V \sim m_\mu$

Going via the Barr-Zee diagram we have for instance

For muon : $g_{a\gamma}g_{a\mu} \sim -(0.001)^2 \text{ GeV}^{-2}$ For electron : $g_{a\gamma}g_{ae} \sim \pm (0.0025)^2 \text{ GeV}^{-2}$

Illustrating the resonance

• No effect outside of the resonance: safe for other experiments

• Data-driven estimate quite robust again a change in a single experiment

Portal interactions

- A simple way of parametrising FIPs interaction with the SM rely on "portal" operators
- \rightarrow A neutral particle, must be coupled to a neutral "current" in the SM

	SM operator	FIPs / dark sector	examples	
Scalar portal	$ H ^2$ $(d=2),$	$\longleftrightarrow S ^2$	Dark Higgs	Focus
Vector portal	$F_{\mu\nu}$ $(d=2),$	$\longleftrightarrow F'^{\mu\nu}$	Dark photon	these two
	LH (d = 5/2)	\leftarrow N		portals in this talk.
Axion portal	$\overline{f} \Gamma^{\mu} f (\lambda)$	$\partial_{\mu}a$, V_{μ}	$ALP/L_{\mu}-L_{\tau}$	
/ fermion portal	$J_i \downarrow J_j (a=3)$) $\Psi \Gamma_{\mu} \Psi$	Dark fermions	

Couplings to photons and electrons

- Even for models focusing on $(g-2)_{\mu}$, neglecting couplings to electrons/photon is not always well-grounded
 - \rightarrow Radiative corrections typically re-introduce the other couplings
- For a vector FIP, kinetic mixing typically arises back from SM fermions loop

→ Barring tuning with new UV states, kinetic mixing reappears with a loop factor

Holdom 1985

$$\varepsilon \sim \frac{e \; g_{V\ell}}{6\pi^2} \; log$$

• For an ALP, couplings are re-generated following $g_{a\mu} \Rightarrow g_{a\gamma} \Rightarrow g_{ae}$ \rightarrow And of course, electron couplings are also required for Δa_e ...

The key points is that exp. constraints on photon & electrons are very strong...

Couplings to a dark sector

- Interest in FIPs also driven by building models of thermal sub-GeV DM
- Standard example: a vector portal with a Majorana fermion

 \rightarrow Relic density: sub-GeV DM requires $\varepsilon \sim 10^{-3}$ suppression

- Most FIP models can be embedded in a light dark matter setup (of course with various level of complexity ...)
 - ALP model with resonant annihilation
 - e.g. Dolan et al. 1709.00009 most light vector FIP models assuming small kinetic mixing

Altogether an extremely rich literature of new "mechanisms" to obtain the relic density (Forbidden DM, Secluded DM, Selfish DM, Cannibal DM, etc ...)

\rightarrow Motivate including "invisible" decay channels for the FIP

Dark photon/ALP production in e^+/e^- machines

We focus primarily on the couplings FIP interactions with e and γ

- \rightarrow NB: Interesting proposals to use muon beam directly not included (eg. NA64 μ)
- → Electron-only machine mostly rely on Bremsstrahlung/Primakoff from secondary photon
- → Positron machine have more channels (annihilation on beam target's electrons)

Detection strategies: two mass ranges

- Intensity beam dumps: typically p machines (beam neutrinos exp, SHiP).
 - → Visible FIP signature in shielded detector "far" away required
- Precision beam dumps: typically e⁺ or e[−] machine (NA64, PADME, LDMX, etc...). Search for large missing energy
 → Limited by detector response (~1 particle per 10 ns), near zero background
 - e⁺e⁻ colliders (LEP, BaBaR, Belle-II ...): Mono-photon search or visible decay
 - → Large luminosity, background control critical
 - Complementary strategies: LLP@LHC, rare meson decay, etc...

but

sensitive

_ess

arger masses

Resonant production and production rates

- How to get to the exact energy?
 - Study models with large invisible width Γ_V^{inv} \rightarrow typical for dark photon with light dark matter
 - Vary the beam energy (+ radiative return)

See e.g. 1802.04756

 Use energy loss in the target to "scan" naturally various positron energies

See e.g. 1802.03794, 2105.04540

Mass dependence

 We fix the ratio between the various couplings,

$$g_{ae} = 10^3 g_{a\gamma} = -10 g_{a\mu}$$

 The FIP mass determines which coupling dominates the prod. rates

→ Has a strong impact on the bounds (e.g NA64)

a^{HVP}: Basic principles of dispersive method

One-loop diagram with hadronic blob = integral over q² of virtual photon, 1 HVP insertion

Causality analyticity dispersion integral: obtain HVP from its imaginary part only

Unitarity ➡ Optical Theorem: imaginary part (`cut diagram') = sum over |cut diagram|², i.e. ∝ sum over all total hadronic cross sections

$$a_{\mu}^{
m had,LO}=rac{m_{\mu}^2}{12\pi^3}\int_{s_{
m th}}^{\infty}ds\;rac{1}{s}\hat{K}(s)\sigma_{
m had}(s)$$

• Weight function $\hat{K}(s)/s = \mathcal{O}(1)/s$ \implies Lower energies more important $\implies \pi^+\pi^-$ channel: 73% of total $a_{\mu}^{\text{had,LO}}$ From Thomas Teubner talk at g-2 days 2021

- Total hadronic cross section σ_{had} from >100 data sets for $e^+e^- \rightarrow$ hadrons in >35 final states
- Uncertainty of $a_{\mu}^{\mu\nu\rho}$ prediction from statistical & systematic uncertainties of input data
- Pert. QCD used only at large s, no modelling of $\sigma_{had}(s)$ required, direct data integration

Example of background processes, estimated by LDMX

LDMX collaboration 1808.05219

	Photo-nuclear		Muon conversion	
	Target-area	ECal	Target-area	ECal
EoT equivalent	4×10^{14}	$2.1 imes 10^{14}$	$8.2 imes 10^{14}$	$2.4 imes 10^{15}$
Total events simulated	$8.8 imes 10^{11}$	4.65×10^{11}	$6.27 imes 10^8$	$8 imes 10^{10}$
Trigger, ECal total energy $< 1.5 \text{ GeV}$	1×10^8	$2.63 imes 10^8$	$1.6 imes10^7$	$1.6 imes 10^8$
Single track with $p < 1.2 \mathrm{GeV}$	2×10^7	$2.34 imes 10^8$	$3.1 imes 10^4$	$1.5 imes 10^8$
ECal BDT (> 0.99)	$9.4 imes 10^5$	$1.32 imes 10^5$	< 1	< 1
HCal max $PE < 5$	< 1	10	< 1	< 1
ECal MIP tracks = 0	< 1	< 1	< 1	< 1