

Status of B semitauonic analysis at LHCb

 $Bo\ Fang^{1,2,3}$, Liang Sun², Guy Wormser^{2,3} Wuhan University¹ & Paris – Saclay University² & IJCLab³

> GDR-InF annual workshop 2021 27 Oct 2021

GDR-InF annual workshop 2021

Outline

- LFUV and semitauonic B decays
- Details about $R(D^*)$ measurement with hadronic tau decays
- Prospects: growth in statistics and inputs from BESIII
- Summary

Lepton flavour universality (LFU)

- An approximate lepton ($\ell = e, \mu, \tau$) flavor symmetry among physical observables
- Broken in the Standard Model (SM) only by the charged lepton mass term
- New physics particles coupling to 3rd generation charged lepton can lead to lepton flavour universality violation (LFUV)

Semitauonic B decays as tests of LFUV

• $b \rightarrow c\ell\nu$ transitions: $R(X_c) = \frac{BR(X_b \rightarrow X_c \tau \nu_{\tau})}{BR(X_b \rightarrow X_c \mu \nu_{\mu})}$

e.g. possible contribution from leptoquark [PRL116(2016)081801]

Experimental results about semitauonic B decays

- R(D) and R(D*) combined results: ²
 3.4σ extension from SM predictions
- R(J/ψ): $B_c^+ \to J/\psi \ell^+ \nu_{\ell}$ ~2 σ from SM [PRL 120, 121801 (2018)]

LHCb15: $\tau^+ \to \mu^+ \nu_{\mu} \overline{\nu}_{\tau}$ [PRL115(2015)111803]

LHCb18: $\tau^+ \to \pi^+ \pi^- \pi^+ (\pi^0) \overline{\nu}_{\tau}$ [PRL120(2018)171802, PRD97(2018)072013]

All LHCb results based on 3fb⁻¹ data from Run1, updates are on the way!

Details about $R(D^*)$ measurement with hadronic tau decays

[PRL120(2108)171802, PRD 97(2018)072013]

- Advantage for hadraonic tau decays: three prong decays allow for the reconstruction of tau vertex & no background from normal semileptonic decays
- Target measurement: $K(X_c) = \frac{BR(B^0 \to D^{*-}\tau^+\nu_{\tau})}{BR(B^0 \to D^{*-}\pi^+\pi^-\pi^+)}$. Same charged final states in signal and normalization channels.

Details about $R(D^*)$ measurement with hadronic tau decays

[PRL120(2108)171802, PRD 97(2018)072013]

- Main backgrounds:
 - $B^0 \to D^{*-}\pi^+\pi^-\pi^+X$
 - $B^0 \to D^{*-}DX(D=D_S^+, D^0, D^+)$
- After the detached vertex cut, the largest background from $B^0 \to D^{*-}\pi^+\pi^-\pi^+X$ decays is suppressed by ~3 orders of magnitude

The dominant double charm background $B^0 o D^{*-}D_s^+ X$ is reduced by a boosted decision tree (BDT) based on 3π dynamics and resonant structure $B^0 o D^{*-}D^0 X$ is well constrained by charged-particle isolation method

Prospects: growth in statistics

Experiment	BABAR	Belle	Belle II	LHCb			
				Run 1	Run 2	Runs 3–4	Runs 5–6
Completion date	2008	2010	2031	2012	2018	2031	2041
Center-of-mass energy	$10.58~{\rm GeV}$	$10.58/10.87 \; \mathrm{GeV}$	$10.58/10.87 \; \mathrm{GeV}$	7/8 TeV	13 TeV	$14~{\rm TeV}$	$14~{\rm TeV}$
$b\bar{b}$ cross section [nb]	1.05	1.05/0.34	1.05/0.34	$(3.0/3.4)\times10^5$	5.6×10^5	6.0×10^5	6.0×10^{5}
Integrated luminosity [fb ⁻¹]	424	711/121	$(40/4) \times 10^3$	3	6	40	300
B^0 mesons $[10^9]$	0.47	0.77	40	170	580	4,200	32,000
B^+ mesons $[10^9]$	0.47	0.77	40	170	580	4,200	32,000
B_s mesons $[10^9]$	-	0.01	0.5	40	140	1,000	7,600
Λ_b baryons [10 ⁹]	图	(2)	20	90	300	2,200	16,000
B_c mesons [10 ⁹]	-	_	-	1.3	4.4	32	240

Mass spectrum of reconstructed B^0 from roughly preselected $B^0 \to D^{*-}\pi^+\pi^-\pi^+$ candidates

- Hopefully, owing to
 - increase in integrated luminosity
 - larger \sqrt{s} leads to larger production cross section
 - improved trigger and selection

The stat. uncertainty of hadronic $R(D^*)$ can reduce to below 3%

Prospects: inputs from BESIII

Relative Systematic uncertainties on $R(D^*)$

Source	$\delta R(D^{*-})/R(D^{*-})$ [%]		
Simulated sample size	4.7		
Empty bins in templates	1.3		
Signal decay model	1.8		
$D^{**}\tau\nu$ and $D_s^{**}\tau\nu$ feeddowns	2.7		
$D_s^+ \to 3\pi X$ decay model	2.5		
$B \to D^{*-}D_s^+X, B \to D^{*-}D^+X,$	3.9		
$B \to D^{*-}D^0X$ backgrounds	11.000,000,000		
Combinatorial background	0.7		
$B \to D^{*-}3\pi X$ background	2.8		
Efficiency ratio	3.9		
Normalization channel efficiency (modeling of $B^0 \to D^{*-}3\pi$)	2.0		
Total uncertainty	9.1		

[PRL120(2108)171802, PRD 97(2018)072013]

- Regarding charm mesons decays, need inputs from BESIII
 - Inclusive $D_s^+ \to \pi^+ \pi^- \pi^+ X$
 - $\eta \pi, \eta \rho, \eta' \pi, \eta' \rho, \omega \pi, \omega \rho, \phi \pi, \phi \rho$
 - M3 π where M is $(\pi^0, \eta, \eta', K^0, \omega, \phi)$
- Cooperations between LHCb and BESIII on this project is ongoing
- These inputs are critical for the complete R(X) program of LHCb

I'm working on the measurement of branching fraction of $D_s^+ \to \pi^+ \pi^- \pi^+ \eta'$ at BESIII

Prospects: inputs from BESIII

- Recent result on this project from BESIII:
 - Branching fraction of $D_s^+ \to \pi^+ \pi^- \pi^+ \eta$

$$\mathcal{B}(D_s^+ \to \pi^+ \pi^+ \pi^- \eta) = (3.12 \pm 0.13_{\text{stat.}} \pm 0.09_{\text{syst.}})\%$$

TABLE I: Phases and FFs for various intermediate processes. The first and the second uncertainties are statistical and systematic, respectively.

Amplitude	Phase	FF(%)
$a_1(1260)^+(\rho(770)^0\pi^+)\eta$	0.0(fixed)	$55.4 \pm 3.9 \pm 2.0$
$a_1(1260)^+(f_0(500)\pi^+)\eta$	$5.0 \pm 0.1 \pm 0.1$	$8.1 \pm 1.9 \pm 2.1$
$a_0(980)^+\rho(770)^0$	$2.5\pm0.1\pm0.1$	$6.7 \pm 2.5 \pm 1.5$
$\eta(1405)(a_0(980)^-\pi^+)\pi^+$	$0.2\pm0.2\pm0.1$	$0.7\pm0.2\pm0.1$
$\eta(1405)(a_0(980)^+\pi^-)\pi^+$	$0.2\pm0.2\pm0.1$	$0.7\pm0.2\pm0.1$
$f_1(1420)(a_0(980)^-\pi^+)\pi^+$		$1.9 \pm 0.5 \pm 0.3$
$f_1(1420)(a_0(980)^+\pi^-)\pi^+$	$4.3 \pm 0.2 \pm 0.4$	$1.7\pm0.5\pm0.3$
$[a_0(980)^-\pi^+]_S\pi^+$	$0.1\pm0.2\pm0.2$	$5.1 \pm 1.2 \pm 0.9$
$[a_0(980)^+\pi^-]_S\pi^+$	$0.1\pm0.2\pm0.2$	$3.4 \pm 0.8 \pm 0.6$
$[f_0(980)\eta]_S\pi^+$	$1.4 \pm 0.2 \pm 0.3$	$6.2 \pm 1.7 \pm 0.9$
$[f_0(500)\eta]_S\pi^+$	$2.5 \pm 0.2 \pm 0.3$	$12.7 \pm 2.6 \pm 2.0$

Prospects: estimated precision evolution

[arXiv:2101.08326]

Summary

- LFUV is a hint towards physics beyond SM
- Semitauonic B decays are important tests of LFUV, updates based on larger samples collected by LHCb are ongoing
- Cooperation with BESIII insures critical inputs about charm mesons decays, which will increase the precision of complete R(X) program at LHCb
- My works on both sides:
 - BESIII: measurement of branching fraction of $D_s^+ \to \pi^+ \pi^- \pi^+ \eta'$
 - LHCb: $R(D^*)$ hadronic measurement using 2017-2018 data samples (4 fb⁻¹)

Backup

The LHCb detector

A single-arm forward spectrometer, designed for the study of heavy flavor physics

- Excellent vertex, IP and decay-time resolution $\sigma(IP) \approx 20 \mu m$ for high- p_T tracks
 - $\sigma(\tau) \approx 45 \text{fs for } B_s^0 \to J/\psi \varphi \text{ and } B_s^0 \to D_s^- \pi^+ \text{ decays}$
- Very good momentum resolution
 - $\delta p/p \approx 0.5\%-1\%$ for $p \in (0,200)$ GeV $\sigma(m_B) \approx 24$ MeV for two-body decays
- Hadron and muon identification

$$\varepsilon_{K\to K} \approx 95\%$$
 for $\varepsilon_{\pi\to K} \approx 5\%$ up to 100 GeV $\varepsilon_{\mu\to\mu} \approx 97\%$ for $\varepsilon_{\pi\to\mu} \approx 1\%$ -3%

- $2 < \eta < 5$ range(LHCb acceptance): $\sim 3x10^4/s$ bb pairs@7TeV
 - ~x2 yield@13TeV; ~x20 yield for $c\overline{c}$ pairs

Details about $R(D^*)$ measurement with hadronic tau decays

[PRL120(2108)171802, PRD 97(2018)072013]

- Signal yield determined by a 3D binned template fit
 - $q^2 (\equiv |P_{B^0} P_{D^*}|^2)$
 - t_{τ} , τ decay time
 - BDT output (trained to reduce $B^0 \to D^{*-}D_s^+X$ background)
- Templates obtained from simulation and study of control samples

$$\mathcal{R}(D^{*-}) = 0.291 \pm 0.019(\text{stat}) \pm 0.026(\text{syst}) \pm 0.013(\text{ext})$$

1σ above SM prediction

Future prospects about control of other systematic uncertainties

1. Limited size of MC simulaion samples:

[arXiv:2101.08326]

Hardware (GPU computation)

Fast simulation

Agrressive generator-level selections

2. Modeling of $B \to D^{(*)} \ell \nu$:

Precise parametrizations of hadronic matrix elements

3. $B \to D^{**} \ell \nu$ and $B \to D^{**} \tau \nu$ backgrounds:

Data-driven fits of form factors, LQCD results

Improved measurements of $B \to D^{**} \ell \nu$ relative BR and kinematic distributions

Measurements involving a hadronized $W \rightarrow D_s^+$

Direct measurement of $B \to D^{**} \tau \nu$ for the narrow D^{**} states

4. Other background contributions:

Inputs from Belle II, LHCb and BESIII

5. External branching fraction uncertainties:

More precise measurements from LHCb or Belle II