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Form-factors in b → sℓℓ

Non-local form-factors

→ Main contributions: O
1

c, O
2

c   the so-called “charm-loops”
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A few remarks

1. QCD Factorization [Beneke, Feldmann, Seidel, 2001 & 2004]

2. Theory uncertainties due to charm-loops cancel in ratios 
observables → “clean” observables

Anomalies are not entirely due to charm-loops!

3. Agreement between “clean” and “not-so-clean” observables
Charm-loops effects cannot be very large!

[Capdevila, Fedele, Neshatpour, Stangl, 2021 slides here]

clean all

https://indico.cern.ch/event/1055780/contributions/4454282/
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Anomalies are not entirely due to charm-loops!

3. Agreement between “clean” and “not-so-clean” observables
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4. Naively set theory uncertainty to 0 in Hλ:

→ Significance of the C9 vs. C10 fit rises from ~4σ to ~8σ!
             This talk is not a waste of time…
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A few remarks

1. QCD Factorization [Beneke, Feldmann, Seidel, 2001 & 2004]

2. Theory uncertainties due to charm-loops cancel in ratios 
observables → “clean” observables

Anomalies are not entirely due to charm-loops!

3. Agreement between “clean” and “not-so-clean” observables
Charm-loops effects cannot be very large!

4. Naively set theory uncertainty to 0 in Hλ:

→ Significance of the C9 vs. C10 fit rises from ~4σ to ~8σ!
             This talk is not a waste of time…

5. Theory puzzles in b → scc [Lyon, Zwicky, 2014]
We need to be careful...
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Constraints on H
λ

1.  Two types of OPE can be used for Hλ:

• Local OPE |q|2  m≳ m b
2 [Grinstein, Piryol 2004][Beylich, Buchalla, 

Feldmann 2011]

→ We will discuss it later

q20

q2 < 0: “Bℓ → Mℓ” q2 > 0: “B → Mℓℓ” q2 > m
BM

2: “BM → ℓℓ”

Region of interest

m
BM

2
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Constraints on H
λ

1.  Two types of OPE can be used for Hλ:

• Local OPE |q|2  m≳ m b
2 [Grinstein, Piryol 2004][Beylich, Buchalla, 

Feldmann 2011]

→ We will discuss it later

• Light Cone OPE q2  4m≪ 4m c
2 [Khodjamirian, Mannel, Pivovarov, 

Wang 2010]

→ theory points at q2 < 0 [Gubernari, van Dyk, Virto 2020]

q20

q2 < 0: “Bℓ → Mℓ” q2 > 0: “B → Mℓℓ” q2 > m
BM

2: “BM → ℓℓ”

Region of interest

m
BM

2
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Constraints on H
λ

2.  Charmonium resonances:

• Hλ presents poles at q2 = mJ/ψ
2 and mψ(2S)

2

• The residues are constrained by B → Mψ

q20

q2 < 0: “Bℓ → Mℓ” q2 > 0: “B → Mℓℓ” q2 > m
BM

2: “BM → ℓℓ”
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Constraints on H
λ

2.  Charmonium resonances:

• Hλ presents poles at q2 = mJ/ψ
2 and mψ(2S)

2

• The residues are constrained by B → Mψ

3.  Hλ has a branch cut for q2 > 4mD
2

q20

q2 < 0: “Bℓ → Mℓ” q2 > 0: “B → Mℓℓ” q2 > m
BM

2: “BM → ℓℓ”
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Parametrization of H
λ

s+ = 4mD2 mJ/ψ2mψ(2S))2 -20 GeV2

+20 GeV2 αBK, s ~ 33 GeV2

s
0 
= 4 GeV2

s0

● z-mapping
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 P (z) captures the poles

 Φ(z) is a useful normalization
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Parametrization of H
λ

s+ = 4mD2 mJ/ψ2mψ(2S))2 -20 GeV2

+20 GeV2 αBK, s ~ 33 GeV2

s
0 
= 4 GeV2

s0

● z-mapping

● Analyticity

 P (z) captures the poles

 Φ(z) is a useful normalization

● z-expansion [Gubernari, van Dyk, Virto, 2020]

p
n
(z) : polynomial basis, e.g. zn

[Bobeth, Chrzaszcz, van Dyk, Virto 2017]
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Dispersive bound

● In practice,  aλ,n = 0  for  n > N. What is the truncation error?

[Gubernari, van Dyk, Virto, 2020]



Méril Reboud - 1616/11/2021

Dispersive bound

● In practice,  aλ,n = 0  for  n > N. What is the truncation error?

● If pn = zn, the convergence is fast (zJ/ψ ~ -0.2)

[Gubernari, van Dyk, Virto, 2020]
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Dispersive bound

● In practice,  aλ,n = 0  for  n > N. What is the truncation error?

● If pn = zn, the convergence is fast (zJ/ψ ~ -0.2)

● Dispersive bound (from the local OPE)

[Gubernari, van Dyk, Virto, 2020]
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Global fit to b → sℓℓ

● The fit is performed in two steps...

– Fit to the local and non-local form 
factors (described in the back-up)

– Usual fit to the WET Wilson 
coefficients

● … using EOS:

https://eos.github.io/

EOS is a software for a variety of applications 
in flavour physics. It is written in C++, but 
provides an interface to Python.

[Gubernari, Reboud, van Dyk, Virto, soon]

https://eos.github.io/
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Back-up
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Fit to local and non-local FFs

● Local and non-local form factors are fitted together to account for 
correlations (due to theory points at q2 < 0)

● The posteriors are not Gaussian distributed...

● ...we described them as Gaussian mixture densities using pypmc [https://
github.com/pypmc/pypmc]


