Non-local form factors in $\mathrm{b} \rightarrow$ sll

GDR-Inf annual workshop - LPNHE - 16/11/2021

Méril Reboud

In collaboration with:
N. Gubernari, D. van Dyk, J. Virto

Form-factors in $\mathrm{b} \rightarrow$ sll

$$
\mathcal{A}_{\lambda}^{L, R}\left(B \rightarrow M_{\lambda} \ell \ell\right)=\mathcal{N}_{\lambda}\left\{\left(C_{9} \mp C_{10}\right) \mathcal{F}_{\lambda}\left(q^{2}\right)+\frac{2 m_{b} M_{B}}{q^{2}}\left[C_{7} \mathcal{F}_{\lambda}^{T}\left(q^{2}\right)-16 \pi^{2} \frac{M_{B}}{m_{b}} \mathcal{H}_{\lambda}\left(q^{2}\right)\right]\right\}
$$

Non-local form-factors

$$
\mathcal{H}_{\lambda}\left(q^{2}\right)=i \mathcal{P}_{\mu}^{\lambda} \int d^{4} x e^{i q \cdot x}\left\langle\bar{M}_{\lambda}(k)\right| T\left\{\mathcal{J}_{\mathrm{em}}^{\mu}(x), \mathcal{C}_{i} \mathcal{O}_{i}(0)\right\}|\bar{B}(q+k)\rangle
$$

\rightarrow Main contributions: $\mathrm{O}_{1}{ }^{c}, \mathrm{O}_{2}{ }^{\mathrm{c}}$ the so-called "charm-loops"

A few remarks

1. QCD Factorization [Beneke, Feldmann, Seidel, 2001 \& 2004]

A few remarks

1. QCD Factorization [Beneke, Feldmann, Seidel, 2001 \& 2004]
2. Theory uncertainties due to charm-loops cancel in ratios observables \rightarrow "clean" observables

Anomalies are not entirely due to charm-loops!

A few remarks

1. QCD Factorization [Beneke, Feldmann, Seidel, 2001 \& 2004]
2. Theory uncertainties due to charm-loops cancel in ratios observables \rightarrow "clean" observables

Anomalies are not entirely due to charm-loops!
3. Agreement between "clean" and "not-so-clean" observables Charm-loops effects cannot be very large!

[Capdevila, Fedele, Neshatpour, Stangl, 2021 slides here]

A few remarks

1. QCD Factorization [Beneke, Feldmann, Seidel, 2001 \& 2004]
2. Theory uncertainties due to charm-loops cancel in ratios observables \rightarrow "clean" observables

Anomalies are not entirely due to charm-loops!
3. Agreement between "clean" and "not-so-clean" observables Charm-loops effects cannot be very large!
4. Naively set theory uncertainty to 0 in H_{λ} :
\rightarrow Significance of the C_{9} vs. C_{10} fit rises from $\sim 4 \sigma$ to $\sim 8 \sigma$! This talk is not a waste of time...

A few remarks

1. QCD Factorization [Beneke, Feldmann, Seidel, 2001 \& 2004]
2. Theory uncertainties due to charm-loops cancel in ratios observables \rightarrow "clean" observables Anomalies are not entirely due to charm-loops!
3. Agreement between "clean" and "not-so-clean" observables Charm-loops effects cannot be very large!
4. Naively set theory uncertainty to 0 in H_{λ} :
\rightarrow Significance of the C_{9} vs. C_{10} fit rises from $\sim 4 \sigma$ to $\sim 8 \sigma$!
This talk is not a waste of time...
5. Theory puzzles in $\mathbf{b} \rightarrow \mathbf{s c} \mathbf{c}$ [Lyon, Zwicky, 2014]

We need to be careful...

Constraints on H_{λ}

1. Two types of OPE can be used for H_{λ} :

- Local OPE $|q|^{2} \gtrsim m_{b}{ }^{2}$ [Grinstein, Piryol 2004][Beylich, Buchalla, Feldmann 2011]
\rightarrow We will discuss it later

Constraints on H_{λ}

1. Two types of OPE can be used for H_{λ} :

- Local OPE $|q|^{2} \gtrsim m_{b}{ }^{2}$ [Grinstein, Piryol 2004][Beylich, Buchalla, Feldmann 2011]
\rightarrow We will discuss it later
- Light Cone OPE $q^{2} \ll 4 m_{c}^{2}$ [Khodjamirian, Mannel, Pivovarov, Wang 2010]
\rightarrow theory points at $\mathrm{q}^{2}<0$ [Gubernari, van Dyk, Virto 2020]

Constraints on H_{λ}

2. Charmonium resonances:

- H_{λ} presents poles at $q^{2}=m_{J / \psi^{2}}$ and $m_{\psi(2 s)^{2}}$
- The residues are constrained by $B \rightarrow M \psi$

Constraints on H_{λ}

2. Charmonium resonances:

- H_{λ} presents poles at $q^{2}=m_{\mathrm{J} / \psi^{2}}$ and $m_{\psi(2 s)^{2}}$
- The residues are constrained by $B \rightarrow M \psi$

3. H_{λ} has a branch cut for $q^{2}>4 m_{D}{ }^{2}$

Parametrization of H_{λ}

- z-mapping

$$
z(s) \equiv \frac{\sqrt{s_{+}-s}-\sqrt{s_{+}-s_{0}}}{\sqrt{s_{+}-s}+\sqrt{s_{+}-s_{0}}}
$$

Parametrization of H_{λ}

- z-mapping

$$
z(s) \equiv \frac{\sqrt{s_{+}-s}-\sqrt{s_{+}-s_{0}}}{\sqrt{s_{+}-s}+\sqrt{s_{+}-s_{0}}}
$$

- Analyticity

$$
\hat{\mathcal{H}}_{\lambda}^{B \rightarrow V}(z) \equiv \phi_{\lambda}^{B \rightarrow V}(z) \mathcal{P}(z) \mathcal{H}_{\lambda}^{B \rightarrow V}(z)
$$

$\rightarrow \mathcal{P}(\mathrm{z})$ captures the poles
$\rightarrow \Phi(\mathrm{z})$ is a useful normalization

Parametrization of H_{λ}

- z-mapping

$$
z(s) \equiv \frac{\sqrt{s_{+}-s}-\sqrt{s_{+}-s_{0}}}{\sqrt{s_{+}-s}+\sqrt{s_{+}-s_{0}}}
$$

- Analyticity

$$
\hat{\mathcal{H}}_{\lambda}^{B \rightarrow V}(z) \equiv \phi_{\lambda}^{B \rightarrow V}(z) \mathcal{P}(z) \mathcal{H}_{\lambda}^{B \rightarrow V}(z)
$$

$\rightarrow \mathcal{P}(\mathrm{z})$ captures the poles
$\rightarrow \Phi(z)$ is a useful normalization

- z-expansion [Gubernari, van Dyk, Virto, 2020]

$$
\hat{\mathcal{H}}_{\lambda}^{B \rightarrow M}(z)=\sum_{n=0}^{\infty} a_{\lambda, n}^{B \rightarrow M} p_{n}^{B \rightarrow M}(z)
$$

$p_{n}(z)$: polynomial basis, e.g. z^{n}
[Bobeth, Chrzaszcz, van Dyk, Virto 2017]

Dispersive bound

$$
\hat{\mathcal{H}}_{\lambda}^{B \rightarrow M}(z)=\sum_{n=0}^{\infty} a_{\lambda, n}^{B \rightarrow M} p_{n}^{B \rightarrow M}(z)
$$

- In practice, $\mathrm{a}_{\lambda, \mathrm{n}}=0$ for $\mathrm{n}>\mathrm{N}$. What is the truncation error?

Dispersive bound

$$
\hat{\mathcal{H}}_{\lambda}^{B \rightarrow M}(z)=\sum_{n=0}^{\infty} a_{\lambda, n}^{B \rightarrow M} p_{n}^{B \rightarrow M}(z)
$$

- In practice, $\mathrm{a}_{\lambda, \mathrm{n}}=0$ for $\mathrm{n}>\mathrm{N}$. What is the truncation error?
- If $p_{n}=z^{n}$, the convergence is fast $\left(z_{J / \psi} \sim-0.2\right)$

Dispersive bound

$$
\hat{\mathcal{H}}_{\lambda}^{B \rightarrow M}(z)=\sum_{n=0}^{\infty} a_{\lambda, n}^{B \rightarrow M} p_{n}^{B \rightarrow M}(z)
$$

- In practice, $\mathrm{a}_{\lambda, \mathrm{n}}=0$ for $\mathrm{n}>\mathrm{N}$. What is the truncation error?
- If $p_{n}=z^{n}$, the convergence is fast $\left(z_{J / \psi} \sim-0.2\right)$
- Dispersive bound (from the local OPE)

$$
\begin{aligned}
\sum_{n=0}^{\infty} & \left\{2\left|a_{0, n}^{B \rightarrow K}\right|^{2}\right. \\
& \left.+\sum_{\lambda=\perp, \|, 0}\left[2\left|a_{\lambda, n}^{B \rightarrow K^{*}}\right|^{2}+\left|a_{\lambda, n}^{B s}\right|^{2}\right]\right\}<1
\end{aligned}
$$

[Gubernari, van Dyk, Virto, 2020]

Global fit to b \rightarrow sll

- The fit is performed in two steps...
- Fit to the local and non-local form factors (described in the back-up)
- Usual fit to the WET Wilson coefficients
- ... using EOS:

EOS is a software for a variety of applications in flavour physics. It is written in C++, but provides an interface to Python.

https://eos.github.io/

Back-up

Fit to local and non-local FFs

- Local and non-local form factors are fitted together to account for correlations (due to theory points at $\mathrm{q}^{2}<0$)
- The posteriors are not Gaussian distributed...

- ...we described them as Gaussian mixture densities using pypmc [https:// github.com/pypmc/pypmc]

