Non-local form factors in $b \rightarrow s\ell\ell$

GDR-Inf annual workshop – LPNHE – 16/11/2021

Méril Reboud

In collaboration with:

N. Gubernari, D. van Dyk, J. Virto

Technische Universität München

Form-factors in $b \rightarrow s\ell\ell$

$$\mathcal{A}_{\lambda}^{L,R}(B \to M_{\lambda}\ell\ell) = \mathcal{N}_{\lambda} \left\{ (C_9 \mp C_{10}) \mathcal{F}_{\lambda}(q^2) + \frac{2m_b M_B}{q^2} \left[C_7 \mathcal{F}_{\lambda}^T(q^2) - 16\pi^2 \frac{M_B}{m_b} \mathcal{H}_{\lambda}(q^2) \right] \right\}$$

Non-local form-factors

$$\mathcal{H}_{\lambda}(q^2) = i\mathcal{P}^{\lambda}_{\mu} \int d^4x \, e^{iq \cdot x} \langle \bar{M}_{\lambda}(k) | T\{\mathcal{J}^{\mu}_{\rm em}(x), \mathcal{C}_i \mathcal{O}_i(0)\} | \bar{B}(q+k) \rangle$$

 \rightarrow Main contributions: O_1^c , O_2^c the so-called "charm-loops"

1. QCD Factorization [Beneke, Feldmann, Seidel, 2001 & 2004]

- 1. QCD Factorization [Beneke, Feldmann, Seidel, 2001 & 2004]
- 2. Theory uncertainties due to charm-loops cancel in ratios observables → "clean" observables Anomalies are not entirely due to charm-loops!

- 1. QCD Factorization [Beneke, Feldmann, Seidel, 2001 & 2004]
- Theory uncertainties due to charm-loops cancel in ratios observables → "clean" observables
 Anomalies are not entirely due to charm-loops!
- **3. Agreement** between "clean" and "not-so-clean" observables Charm-loops effects cannot be very large!

[Capdevila, Fedele, Neshatpour, Stangl, 2021 slides here]

- 1. QCD Factorization [Beneke, Feldmann, Seidel, 2001 & 2004]
- Theory uncertainties due to charm-loops cancel in ratios observables → "clean" observables
 Anomalies are not entirely due to charm-loops!
- **3. Agreement** between "clean" and "not-so-clean" observables Charm-loops effects cannot be very large!
- 4. Naively set theory uncertainty to 0 in H_{λ} :
 - \rightarrow Significance of the C₉ vs. C₁₀ fit rises from ~4 σ to ~8 σ ! This talk is not a waste of time...

- 1. QCD Factorization [Beneke, Feldmann, Seidel, 2001 & 2004]
- Theory uncertainties due to charm-loops cancel in ratios observables → "clean" observables
 Anomalies are not entirely due to charm-loops!
- **3. Agreement** between "clean" and "not-so-clean" observables Charm-loops effects cannot be very large!
- 4. Naively set theory uncertainty to 0 in H_{λ} :
 - → Significance of the C_9 vs. C_{10} fit rises from ~4 σ to ~8 σ !

 This talk is not a waste of time...
- 5. Theory puzzles in $b \rightarrow s\overline{c}c$ [Lyon, Zwicky, 2014] We need to be careful...

- 1. Two types of **OPE** can be used for H_{λ} :
 - Local OPE $|q|^2 \gtrsim m_b^2$ [Grinstein, Piryol 2004][Beylich, Buchalla, Feldmann 2011]
 - → We will discuss it later

- 1. Two types of **OPE** can be used for H_{λ} :
 - Local OPE $|q|^2 \gtrsim m_b^2$ [Grinstein, Piryol 2004][Beylich, Buchalla, Feldmann 2011]
 - → We will discuss it later
 - Light Cone OPE $q^2 \ll 4m_c^2$ [Khodjamirian, Mannel, Pivovarov, Wang 2010]
 - \rightarrow theory points at q² < 0 [Gubernari, van Dyk, Virto 2020]

2. Charmonium resonances:

- H_{λ} presents poles at $q^2 = m_{J/\psi}^2$ and $m_{\psi(2S)}^2$
- The residues are constrained by $B o M\psi$

- 2. Charmonium resonances:
 - H_{λ} presents poles at $q^2 = m_{J/\psi}^2$ and $m_{\psi(2S)}^2$
 - The residues are constrained by B \rightarrow M ψ
- 3. H_{λ} has a branch cut for $q^2 > 4m_D^2$

Parametrization of H_{λ}

• z-mapping

$$z(s) \equiv \frac{\sqrt{s_{+} - s} - \sqrt{s_{+} - s_{0}}}{\sqrt{s_{+} - s} + \sqrt{s_{+} - s_{0}}}$$

Parametrization of H_{λ}

• z-mapping

$$z(s) \equiv \frac{\sqrt{s_{+} - s} - \sqrt{s_{+} - s_{0}}}{\sqrt{s_{+} - s} + \sqrt{s_{+} - s_{0}}}$$

Analyticity

$$\hat{\mathcal{H}}_{\lambda}^{B \to V}(z) \equiv \phi_{\lambda}^{B \to V}(z) \, \mathcal{P}(z) \, \mathcal{H}_{\lambda}^{B \to V}(z)$$

- $\Rightarrow \mathcal{P}(z)$ captures the poles
- $\rightarrow \Phi(z)$ is a useful normalization

Parametrization of H_{λ}

z-mapping

$$z(s) \equiv \frac{\sqrt{s_{+} - s} - \sqrt{s_{+} - s_{0}}}{\sqrt{s_{+} - s} + \sqrt{s_{+} - s_{0}}}$$

Analyticity

$$\hat{\mathcal{H}}_{\lambda}^{B \to V}(z) \equiv \phi_{\lambda}^{B \to V}(z) \, \mathcal{P}(z) \, \mathcal{H}_{\lambda}^{B \to V}(z)$$

- $\rightarrow \mathcal{P}(z)$ captures the poles
- $\rightarrow \Phi(z)$ is a useful normalization
- z-expansion [Gubernari, van Dyk, Virto, 2020]

$$\hat{\mathcal{H}}_{\lambda}^{B \to M}(z) = \sum_{n=0}^{\infty} a_{\lambda,n}^{B \to M} p_n^{B \to M}(z)$$

 $p_n(z)$: polynomial basis, e.g. z^n [Bobeth, Chrzaszcz, van Dyk, Virto 2017]

Dispersive bound

$$\hat{\mathcal{H}}_{\lambda}^{B \to M}(z) = \sum_{n=0}^{\infty} a_{\lambda,n}^{B \to M} p_n^{B \to M}(z)$$

• In practice, $a_{\lambda,n}=0$ for n>N. What is the truncation error?

Dispersive bound

$$\hat{\mathcal{H}}_{\lambda}^{B\to M}(z) = \sum_{n=0}^{\infty} a_{\lambda,n}^{B\to M} p_n^{B\to M}(z)$$

- In practice, $a_{\lambda,n} = 0$ for n > N. What is the truncation error?
- If $p_n = z^n$, the convergence is fast $(z_{J/\psi} \sim -0.2)$

Dispersive bound

$$\hat{\mathcal{H}}_{\lambda}^{B \to M}(z) = \sum_{n=0}^{\infty} a_{\lambda,n}^{B \to M} p_n^{B \to M}(z)$$

- In practice, $a_{\lambda,n} = 0$ for n > N. What is the truncation error?
- If $p_n = z^n$, the convergence is fast $(z_{J/\psi} \sim -0.2)$
- Dispersive bound (from the local OPE)

$$\sum_{n=0}^{\infty} \left\{ 2 \left| a_{0,n}^{B \to K} \right|^{2} + \sum_{\lambda=\perp,\parallel,0} \left[2 \left| a_{\lambda,n}^{B \to K^{*}} \right|^{2} + \left| a_{\lambda,n}^{B_{s} \to \phi} \right|^{2} \right] \right\} < 1$$

Global fit to $b \rightarrow s\ell\ell$

- The fit is performed in two steps...
 - Fit to the local and non-local form factors (described in the back-up)

- Usual fit to the WET Wilson coefficients
- ... using **EOS**:

EOS is a software for a variety of applications in flavour physics. It is written in C++, but provides an interface to Python.

https://eos.github.io/

Back-up

Fit to local and non-local FFs

- Local and non-local form factors are fitted together to account for correlations (due to theory points at q² < 0)
- The posteriors are not Gaussian distributed...

...we described them as Gaussian mixture densities using pypmc [https://

github.com/pypmc/pypmc]

