The Forward-Backward Asymmetry in $B \to D^*\ell\nu$: One more hint for Scalar Leptoquarks?

AC, Andreas Crivellin, Diego Guadagnoli, Shireen Gangal arXiv:2106.09610

Putative B-decay discrepancies involving $b \to s\ell\ell$ and $b \to c\ell\nu$

• Can be interpreted as the manifestation of New Physics in loops at the $\mathcal{O}(TeV)$ scale, at tree level $\mathcal{O}(10TeV)$

Muon magnetic dipole moment anomaly $a_{\mu} = (g-2)_{\mu}/2$

- Longstanding discrepancy wrt SM. Update by Fermilab 2021 : 4.2σ pull
- Only receives contributions from loops, natural probe for NP at high energy
- The discrepancy is the same size as the EW contribution, could be NP at O(TeV) scale

Putative B-decay discrepancies involving $b \to s\ell\ell$ and $b \to c\ell\nu$

• Can be interpreted as the manifestation of New Physics in loops at the $\mathcal{O}(TeV)$ scale, at tree level $\mathcal{O}(10TeV)$

Muon magnetic dipole moment anomaly $a_{\mu} = (g-2)_{\mu}/2$

- Longstanding discrepancy wrt SM. Update by Fermilab 2021 : 4.2σ pull
- Only receives contributions from loops, natural probe for NP at high energy
- The discrepancy is the same size as the EW contribution, could be NP at $\mathcal{O}(TeV)$ scale

Playground for model builders Popular solution : *Leptoquarks*

New putative discrepancies in $B \to D^* \ell \nu$?

C. Bobeth, M. Bordone, N. Gubernari, M. Jung et D. van Dyk (2104.02094)

- Based on Belle 2018 untagged (1809.03290) which released the first dataset for angular distribution of $B \to D^*\ell\nu$ with separate μ and e modes
- Includes binned decay rates and all angular coefficients in $B\to D^*\mathcal{E}\nu$
- Among the angular observables Forward-Backward Asymmetry $\equiv A_{\rm FB}$

$$\bullet \ \Delta A_{\rm FB} = A_{\rm FB}^{\mu} - A_{\rm FB}^{e}$$

$$A_{\rm FB}(q^2) = \frac{\int_0^1 d^2\Gamma/dq^2 d{\rm cos}\theta_l - \int_{-1}^0 d^2\Gamma/dq^2 d{\rm cos}\theta_l}{\int_0^1 d^2\Gamma/dq^2 d{\rm cos}\theta_l + \int_{-1}^0 d^2\Gamma/dq^2 d{\rm cos}\theta_l}$$

$$\langle A_{\text{FB}} \rangle = \int_{q_{min}^2}^{q_{max}^2} A_{\text{FB}}(q^2) \, \mathrm{d}q^2$$

New putative discrepancies in $B \to D^* \ell \nu$?

C. Bobeth, M. Bordone, N. Gubernari, M. Jung et D. van Dyk (2104.02094)

- ~ 4σ pull in $\langle \Delta A_{\rm FB} \rangle$ -> LFUV
- ~ 2σ pull in $\langle A_{\rm FB}^{\mu} \rangle$ -> NP coupled to muons ?
- Reduced uncertainty in theory predictions for « Δ » observables, good probe for LFUV
- Caveat:
 - Correlation between μ and e modes were not provided explicitly -> reconstructed by the authors
 - Inconsistencies in the statistical correlation matrix
- The $\langle \Delta A_{\rm FB} \rangle$ discrepancy holds even in the most unfavorable correlation > 3σ

Leptoquarks Models

Leptoquarks 101

• 10 possible representations of LQs 5 scalars, 5 vectors. $M_{LO} \gtrsim 1 {\rm TeV}$

Crivellin et al. (2101.07811)

Field	Φ_1	$\tilde{\Phi}_1$	Φ_2	$ ilde{\Phi}_2$	Φ_3	V_1	$ ilde{V}_1$	V_2	$ ilde{V}_2$	V_3
$SU(3)_c$	3	3	3	3	3	3	3	3	3	3
$SU(2)_L$	1	1	2	2	3	1	1	2	2	3
$SU(2)_L \ U(1)_Y$	$\left -\frac{2}{3}\right $	$-\frac{8}{3}$	$\frac{7}{3}$	$\frac{1}{3}$	$-\frac{2}{3}$	$\frac{4}{3}$	$\frac{10}{3}$	$-\frac{5}{3}$	$\frac{1}{3}$	$\frac{4}{3}$

Tree-level couplings to scalar LQs :

$$\mathcal{L}_{\text{scalar}}^{LQ} = \left(\lambda_{fi}^{1R} \overline{u_f^c} \ell_i + \lambda_{fi}^{1L} \overline{Q_f^c} i \tau_2 L_i\right) \Phi_1^{\dagger} + \tilde{\lambda}_{fi}^{1} \overline{d_f^c} \ell_i \tilde{\Phi}_1^{\dagger} + \tilde{\lambda}_{fi}^{2} \overline{d_f^c} \tilde{\Phi}_2^{\dagger} L_i$$

$$+ \left(\lambda_{fi}^{2RL} \overline{u_f} L_i + \lambda_{fi}^{2LR} \overline{Q_f^c} i \tau_2 \ell_i\right) \Phi_2^{\dagger} + \lambda_{fi}^{3} \overline{Q_f^c} i \tau_2 (\tau \cdot \Phi_3)^{\dagger} L_i + \text{h.c.}.$$

• LQs affect flavor physics at low energy, eg $b \to c au
u$

Leptoquarks to EFTs

LQ in Weak Effective Theory (WET)

$$\begin{split} \mathcal{H}_{\text{eff}}^{\ell_f \nu_i} &= \frac{4G_F}{\sqrt{2}} V_{cb} \sum_k C_k^{fi} O_k^{fi} + \text{h.c.} \\ O_{VL(R)}^{fi} &= \bar{c} \gamma^\mu P_{L(R)} b \, \bar{\ell}_f \gamma_\mu P_L \nu_i \,, \end{split}$$

$$O_{SL(R)}^{fi} = \bar{c}P_{L(R)}b\,\bar{\ell}_f P_L \nu_i\,,$$
 $O_{TL}^{fi} = \bar{c}\sigma^{\mu\nu}P_L b\,\bar{\ell}_f \sigma_{\mu\nu}P_L \nu_i\,.$

For our model building purpose f, i = 2

Each LQ model generates a unique set of WCs

Is one of these LQ models preferred by $b \to c\ell\bar{\nu}$ data?

Crivellin et al. (1706.08511)

					•	,
$b \to c \bar{\nu}_i \ell_f^-$	C_{VL}^{fi}	C_{VR}^{fi}	C_{SL}^{fi}	C_{SR}^{fi}	C_{TL}^{fi}	DOF in WET:
Φ_1	$-\lambda_{3i}^{1L}V_{2j}\lambda_{jf}^{1L*}$	0	$\lambda_{3i}^{1L}\lambda_{2f}^{1R*}$	0	$-\tfrac{1}{4}\lambda_{3i}^{1L}\lambda_{2f}^{1R*}$	$C_{VL}^{fi}, C_{SL}^{fi} = -8.5C_{TL}^{fi}$
Φ_3	$\lambda_{3i}^3 V_{2j} \lambda_{jf}^{3*}$	0	0	0	0	C_{VL}^{fi}
Φ_2	0	0	$\lambda_{2i}^{2RL}\lambda_{3f}^{2LR*}$	0	$\tfrac{1}{4}\lambda_{2i}^{2RL}\lambda_{3f}^{2LR*}$	$C_{SL}^{fi} = 8.5C_{TL}^{fi}$
$\tilde{\Phi}_2$	0	0	0	0	0	
$\tilde{\Phi}_1$	0	0	0	0	0	
V_1^μ	$-2\kappa_{3f}^{1L*}V_{2j}\kappa_{ji}^{1L}$	0	0	$4\kappa_{3f}^{1R*}V_{2j}\kappa_{ji}^{1L}$	0	C_{VL}^{fi}, C_{SR}^{fi}
V_3^μ	$2\kappa_{3f}^{3*}V_{2j}\kappa_{ji}^3$	0	0	0	0	C_{VL}^{fi}
V_2^μ	0	0	0	$4\kappa_{3i}^{2RL}V_{2j}\kappa_{jf}^{2LR*}$	0	C_{SR}^{fi}
$ ilde{V}_1^\mu$	0	0	0	0	0	
$ ilde{V}_2^\mu$	0	0	0	0	0	

Contribution of the various LQ representation to $b \to c\bar{\nu}_i\ell_f^-$. Each entry should be multiplied by a factor $\frac{-\sqrt{2}}{8G_EV_{ch}}\frac{1}{M^2}$.

Global Fit using flavio

With a single leptoquark

Including
$$\Delta A_{FB}$$
, ΔF_L , ΔS_3 , $R_{D^{(*)}}^{\mu e} = \frac{BR(B \to D^{(*)}\mu\nu)}{BR(B \to D^{(*)}e\nu)}$, ...

Leptoquark	Scenario	SM pull (σ)	p-value
	\mathbf{SM}		0.017
Φ_3, V_3^μ	C_{VL}^{μ}	0.96	0.013
Φ_2	$C^\mu_{SL} = 8.5C^\mu_T$	1.60	0.017
V_2^μ	C^{μ}_{SR}	1.97	0.019
V_1^μ	$C^{\mu}_{VL},C^{\mu}_{SR}$	2.28	0.031
	C_T^μ	3.36	0.093
Φ_1	$C_{VL}^{\mu}, C_{SL}^{\mu} = -8.5 C_{T}^{\mu}$	3.92	0.240

Global Fit using flavio

With a multiple leptoquarks

Including
$$\Delta A_{FB}$$
, ΔF_L , ΔS_3 , $R_{D^{(*)}}^{\mu e} = \frac{BR(B \to D^{(*)}\mu\nu)}{BR(B \to D^{(*)}e\nu)}$, ...

Scenario	SM pull (σ)	p-value
SM		0.017
$C^{\mu}_{VL}, C^{\mu}_{SL}, C^{\mu}_{SR}, C^{\mu}_{T}$	3.39	0.196
$C_{VL}^{\mu}, C_{SL}^{\mu}, C_{T}^{\mu}$	3.72	0.237
$C_{VL}^{\mu}, C_{SL}^{\mu}, C_{SR}^{\mu}$	2.14	0.044
$C^{\mu}_{SL}, C^{\mu}_{SR}, C^{\mu}_{T}$	3.43	0.174
$C_{VL}^{\mu}, C_{SL}^{\mu} = -8.5 C_{T}^{\mu}$	3.92	0.240
$C_{VL}^{\mu}, C_{SL}^{\mu} = 8.5 C_{T}^{\mu}$	2.09	0.037

 Φ_1 LQ model preferred

Global fit

In the C^{μ}_{VL} vs $C^{\mu}_{T}=-\,C^{\mu}_{SL}/8.5$ plane

- Pull with SM $\approx 4\sigma$
- ΔF_L , ΔS_3 do not allow large deviations in $C_T^\mu = C_{SL}^\mu/8.5$
- Additional bound from $R_{K^{(*)}}^{\nu\bar{\nu}}$, which can be lowered by the addition of a triplet scalar leptoquark Φ_3
- Φ_1 and Φ_3 together can explain $R_{D^{(*)}}, \, a_\mu$ and $b \to s\ell\ell$ (Crivellin et al. 1703.09226)

Conclusion

- In addition to existing hints at LFUV, and more specifically NP in muons, Bobeth et al. (2104.02094) finds a potential 4σ pull in $\Delta A_{FB}=A_{FB}^{\mu}-A_{FB}^{e}$ with respect to the SM
- We find that the $SU(2)_L$ -singlet LQ Φ_1 is the only scenario that improves significantly the description of data
- The bound from $R_{K^*}^{
 uar
 u}$ and the $R_{D^{(*)}}$ discrepancy call for Φ_3
- Need reanalysis of Belle 2018 data with full lepton specific correlation matrix
- More updates are coming soon, eg $R_{D^{st}}$ at CMS

Leptoquarks to EFTs

LQ in Weak Effective Theory (WET), eg $SU(2)_L$ -singlet scalar Φ_1

$$\mathcal{H}_{\text{eff}}^{\ell\nu} = \frac{4G_F}{\sqrt{2}} V_{cb} \left(C_{VL}^{\ell} O_{VL}^{\ell} + C_{SL}^{\ell} O_{SL}^{\ell} + C_T^{\ell} O_T^{\ell} \right) \qquad O_{VL}^{\ell} = \bar{c} \gamma^{\mu} P_L b \ \bar{\ell} \gamma_{\mu} P_L \nu_{\ell} \,, \\ O_{SL}^{\ell} = \bar{c} P_L b \ \bar{\ell} P_L \nu_{\ell} \,,$$

In the SM: $C_{VI}^{\mu}=1, C_{SI}^{\mu}=0, C_{T}^{\mu}=0$ at the EW scale

$$O_T^\ell = ar c \sigma^{\mu
u} P_L b \ ar \ell \sigma_{\mu
u} P_L
u_\ell \,.$$

Matching of singlet scalar Φ_1 LQ to this effective Hamiltonian:

$$C_{VL}^\ell = rac{\sqrt{2}}{8G_F\,V_{cb}}rac{V_{cj}\lambda_{j\ell}^{L*}\lambda_{3\ell}^L}{M^2}\,,$$

$$C_{SL}^{\ell} = -4C_{T}^{\ell} = -\frac{\sqrt{2}}{8G_{F}V_{cb}} \frac{\lambda_{2\ell}^{R*}\lambda_{3\ell}^{L}}{M^{2}}.$$

RGE evolution from scale
$$M$$
 to m_b provides
$$\begin{pmatrix} C_{SL}^\ell(m_b) \\ C_T^\ell(m_b) \end{pmatrix} \approx \begin{pmatrix} 1.8 & -0.3 \\ 0 & 0.8 \end{pmatrix} \begin{pmatrix} C_{SL}^\ell(M) \\ C_T^\ell(M) \end{pmatrix}$$

At the b mass scale this implies $C_{SL}^{\ell} pprox - 8.5 C_{T}^{\ell}$

$$C_{SL}^{\ell} \approx -8.5C_{T}^{\ell}$$

Log-Likelihood with flavio

A python package for flavour physics

Parameters: G_F , m_q , V_{CKM} , ...

Wilson Coeff: $WC_j = WC_j^{SM} + WC_j^{NP}$

Theory prediction $\overrightarrow{O}^{\mathrm{th}}$

Covariance matrix $C_{\rm th}$

$$\overrightarrow{O} = \left[\Delta A_{FB}, R_{D^*}^{\mu e}, \dots\right]$$

Experimental data $\overrightarrow{O}^{\text{exp}}$ and C_{exp}

$$-2\ln\widetilde{L}_{\mathrm{exp}} = \vec{x}^T(C_{\mathrm{exp}} + C_{\mathrm{th}})^{-1}\vec{x}\,,$$

$$\overrightarrow{x} = \overrightarrow{O}^{exp} - \overrightarrow{O}^{th}$$

Log-Likelihood

Partial Fit

Theoretical covariance

- Using flavio we compute the likelihood of NP contributions to WCs
- Large theoretical uncertainty for $C_T^\mu, C_{SL}^\mu \neq 0$
- ΔA_{FB} is independent of C^{μ}_{VL} at leading order in NP Wilson Coefficients.

LQ analysis

$$\mathcal{L} = \left(\lambda_{fi}^L \overline{Q_f^c} i \tau_2 L_i + \lambda_{fi}^R \overline{u_f^c} \ell_i\right) \Phi_1^{\dagger} + \text{h.c.}.$$

- In blue: allowed $\lambda_{32}^L \lambda_{22}^R$ in the best fit region from $b \to c \ell \nu$, profiling over C_{VL}
- Strong bound from $\tau \to \mu \nu \nu / \tau \to e \nu \nu$ via $W \to \mu \nu$ coupling

$$\mathcal{L} = \frac{g_2}{\sqrt{2}} \Lambda_{22}^W \left(\bar{\mu} \gamma^{\alpha} P_L \nu_{\mu} W_{\alpha}^- \right) + \text{h.c.}$$

$$\Lambda_{22}^W = 1.0018 \pm 0.0014$$

• Lower limit on LQ mass by CMS and ATLAS leptoquark searches via $\mu\,j$ and $t\,\tau$ final states respectively

Scalar LQs and $(g-2)_{\mu}$

Effective operator for muon g-2

$$\mathcal{L} = y \frac{v}{M^2} \bar{\mu}_R \sigma^{\mu\nu} \mu_L F_{\mu\nu} + \text{h.c.}$$

$$\lambda_{fi}^R \overline{u_f^c} \ell_i \Phi_1^{\dagger} + h.c. \qquad (18)$$

In this case the numerically relevant m_t enhanced contribution to a_{μ} is given by

$$\delta a_{\mu} = \frac{m_{\mu}}{4\pi^2} \operatorname{Re} \left[C_R^{22} \right] , \qquad (19)$$

with

$$C_L^{fi} = -\frac{N_c}{12M^2} m_t \lambda_{3f}^R \lambda_{3i}^{L*} \left(7 + 4 \log \left(\frac{m_t^2}{M^2} \right) \right) , \quad (20)$$

and C_R^{23} is obtained from C_L^{23} by $L \leftrightarrow R$. We will assume that λ_{32}^R is small compared to λ_{32}^L .