

Lepton Flavour Universality tests at high- q^2

Christina Agapopoulou - LPNHE

INTENSITY

frontier

GDR-InF

GDR-InF annual workshop LPNHE - 15-17 November 2021

The RK(*) ratios

LFU in $b \to s\ell\ell$ (FCNC) with $\ell = e, \mu$

Measurements of RK and RK*:

Completing the q² spectrum

- Advantages of performing analysis in bins of q²:
 - NP could have a dependence in q² having a differential analysis helps distinguish different BSM scenarios
 - Exclude cc resonances (SM contributions dominates) can be used as control modes instead

LFU with the LHCb detector

The LHCb experiment at CERN:

- Single-arm spectrometer designed for high-precision flavour physics measurements
- Pseudorapidity range $\eta \in [2, 5]$
- Excellent primary and secondary vertex reconstruction
- Highly efficient particle identification
- Excellent momentum and IP resolution

Electrons and muons at LHCb

- Electrons and muons interact in significantly different ways with the LHCb detector
- Understanding these differences is essential for correctly interpreting LFU ratio measurements

Muon reconstruction:

- Hits from muon stations matched to extrapolated tracks
- Momentum measured from the bending of the track

Electron reconstruction:

- Tracks matched to ECAL clusters
- Momentum measured from the bending of the track

Two main differences:

ECAL has higher occupancy than $MS \rightarrow$ higher hardware trigger thresholds

Electrons emit Bremsstrahlung radiation

JHEP 08 (2017) 055

Bremsstrahlung recovery process

GDR 2021

- Material interactions cause electrons to emit Bremsstrahlung photons
- Emission happens often before the magnet → electron momentum measurement is affected!
- Very frequent at LHCb most electrons emit one energetic brem before the magnet!
- Try to find brem photon and add back its energy to the electron
- Recovery efficiency ~ 50%

- Two problematic scenarios:
 - If Brem is missed \rightarrow down-ward shift of B-mass
 - If random ECAL cluster is assigned → up ward shift of B-mass
 - Migration in and out of q^2 bins! \neg

C. Agapopoulou

Muons are well under control... but what about the electrons?

Challenging background estimation for the electron mode:

• $B^0 \rightarrow K^{*0}\psi(2S)(\rightarrow ee)$ leakage into the rare mode q2 region due to the Bremsstrahlung photon recovery process that sometimes overcorrects the electrons - peaks on the righthand side of the signal

Muons are well under control... but what about the electrons?

Challenging background estimation for the electron mode:

• $B^0 \rightarrow K^{*0}\psi(2S)(\rightarrow ee)$ **leakage** into the rare mode q2 region due to the Bremsstrahlung photon recovery process that sometimes overcorrects the electrons - peaks on the righthand side of the signal

Hadronic partially reconstructed

 $B \rightarrow X(\rightarrow YK^*)\psi(2S)$ (where Y is lost) is a background via the same process, but more problematic since it peaks under the B-mass peak

Muons are well under control... but what about the electrons?

Challenging background estimation for the electron mode:

- $B^0 \to K^{*0} \psi(2S)(\to ee)$ leakage into the rare mode q2 region due to the Bremsstrahlung photon recovery process that sometimes overcorrects the electrons - peaks on the righthand side of the signal
- Hadronic **partially reconstructed** $B \rightarrow X(\rightarrow YK^*)\psi(2S)$ (where Y is lost) is a background via the same process, but more problematic since it peaks under the B-mass peak
- Combinatorial background (from combinations of random tracks) does not follow usual exponential shape but is sculpted - we're at the kinematic limit

Muons are well under control... but what about the electrons?

Challenging background estimation for the electron mode:

• $B^0 \rightarrow K^{*0}\psi(2S)(\rightarrow ee)$ leakage into the rare mode q2 region due to the Bremsstrahlung photon recovery process that sometimes overcorrects the electrons - peaks on the righthand side of the signal

• Hadronic partially reconstructed $B \rightarrow X(\rightarrow YK^*)\psi(2S)$ (where Y is lost) is a background via the same process, but more problematic since it peaks under the B-mass peak

 Combinatorial background (from combinations of random tracks) does not follow usual exponential shape but is sculpted - we're at the kinematic limit

Having a stable mass fit doesn't seem that easy

GDR 2021

And what if...

We removed the Bremsstrahlung recovery process?

Leakage from $\psi(2S)$ processes is removed

BUT, we also loose a lot of signal!

Is there a way to have the best of both worlds?

GDR 2021

Yes!

- Replace the normal q² definition by a "q²"-BDT, optimised to reduce leakage backgrounds while maintaining as much signal as possible
- For an S/B ~ 5, signal efficiency is around
 - q² (without Brem): 20%
 - q² (with Brem): 25%
 - q² BDT: 42%
- Idea is being tested in the $\psi(2S)$ control mode with encouraging results so far

Analysis strategy

• Use **double ratios** to reduce systematic effects

$$R_{K^{*0}} = \frac{\mathcal{B}(B^0 \to K^{*0} \mu^+ \mu^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi(\to \mu^+ \mu^-))} / \frac{\mathcal{B}(B^0 \to K^{*0} e^+ e^-)}{\mathcal{B}(B^0 \to K^{*0} J/\psi(\to e^+ e^-))}$$

- Selection as similar as possible between electrons and muons
 - Pre-selection cuts on trigger and candidate quality
 - Veto peaking backgrounds
 - PID cuts
 - Multi-variate classifiers to reject residual combinatorial and partially reconstructed backgrounds
- Efficiencies:
 - Measurement using mix of simulation and data-driven methods
 - Corrections to simulation in order to achieve good Data/MC agreement
- Mass fit:
 - Used to extract the rare and control mode yields
 - Simultaneous fit of control and rare modes \rightarrow can aid in estimation of leakage

GDR 2021

Summary

Lepton Flavour Universality tests at high-q2

- q²-binned analysis missing a high-q² measurement important for disentangling BSM scenarios
- Main challenge of the high-q² bin is the background estimation
- Novel approach to redefine the q² bin by a BDT variable is being investigated and shows promising results
- RK and RK* analyses progressing in parallel

Status of the RK* high-q² analysis

- Selection is being optimised
- Corrections to simulation almost finalised
- Fit is being implemented
- More results soon!

TT BE

Thank you for your attention!

Backup

Feynman diagrams for $b \rightarrow s\ell\ell$

SM contributions to $b \rightarrow s\ell\ell$

Potential NP contributions to $b \rightarrow s\ell\ell$

Sensitivity of R_{K*}-high q² to BSM models

- Several BSM scenarios show dependence of R_{K*} ratio on q²
- Different C₉, C₁₀ dependence of R_{K*} between mid- and high-q²
- No dependence expected in R_K

Performance comparison B-factories/LHCb

- Larger yields for LHCb
- PID performance similar
- Very different electron response:
 - Belle/BaBar have similar efficiencies for electron/muons
 - LHCb electron efficiency lower because of more Bremsstrahlung and higher trigger thresholds
- B-decays to τ leptons:
 - Belle/BaBar exploit full reco of ^b/_a
 2nd B
 - LHCb reco of decay vertices

GDR 2021

(5 MeV/c²⁾

Bremsstrahlung recovery efficiency

- Most brem photons emitted due to material interactions before the magnet
- If emitted after the magnet, they usually end up in the same cluster as the electron, so they don't get reconstructed separately, but they don't affect (much) the electron trajectory - momentum measurement
- Recovery process:
 - Extrapolate upstream electron to ECAL
 - Add all reconstructed neutral clusters with E_T>75 MeV to electron momentum
- Potential failings:
 - Brem out of acceptance
 - Brem too soft
 - ECAL resolution worse than tracking resolution

GDR 2021

J/ψ Flatness

- Using the Rx 1-D flatness framework
- Run both B+/B⁰ correction chain
- Almost all correction steps
- Missing q² smearing for bin migration (this needs special treatment for the high-q² bin with a q²-BDT cut)
- J/ψ flatness looks good in all checked variables!
- Next steps:
 - Complete correction chain with all Rx recent updates
 - Flatness in ψ(2S)

Unofficial

Flatness Systematics

Additional backgrounds

\pi-> e mis-ID was seen to be more significant in high-q² by RK

- For us, the relevant background is double π-> e mis-ID
- Unfortunately, there's no B2K*ππ dec file without mass cuts - we've created one and submitted an MC request with BnoC
- B2Ksthh stripping line:
 - Loose pion-ID and no mass cuts
 - Can be used along with MC for background estimation
 - B->K*ππ measurement paper also under development

Cascade backgrounds

 Currently investigating if cascade vetoes are as efficient as for low-central q² or if cascade BDT is needed similarly to RK

StrippingB2KsthhLine

Properties:

OutputLocation	Phys/B2KsthhLine/Particles
Author	Rafael Coutinho
Postscale	1.0000000
HLT1	HLT_PASS_RE('Hlt1(Two)?TrackMVADecision')
HLT2	HLT_PASS_RE('Hlt2Topo[234]BodyDecision')
Prescale	1.0000000
L0DU	None
ODIN	None

Filter sequence:

LoKi::VoidFilter/StrippingGoodEventConditionBhadron LoKi::VoidFilter/StrippingB2KsthhLineVOIDFilter CheckPV/checkPVmin1 LoKi::VoidFilter/SelFilterPhys_StdVeryLooseDetachedKst2Kpi_Particles FilterDesktop/KstforB2Ksthh LoKi::VoidFilter/SelFilterPhys_StdLoosePions_Particles CombineParticles/B2KsthhLine AddRelatedInfo/RelatedInfo1_B2KsthhLine AddRelatedInfo/RelatedInfo3_B2KsthhLine AddRelatedInfo/RelatedInfo4_B2KsthhLine