













# Spatial resolution in the Belle II Silicon Vertex Detector

**GdR-Inf 2021 Annual Workshop** 

**Robin Leboucher** 

Lucas Martel

November 16, 2021

#### Contents



- 1 The Belle II Experiment
- 2 Spatial Resolution
  - 2.1 Motivations
  - 2.2 Ingredients for resolution measurements
- 3 Cl Pos Resolution Measurements
  - 3.1 Event by Event Method
  - 3.2 Global Method
  - 3.3 Overlapping Method
- 4 Unfolding

#### Section 1



#### 1 The Belle II Experiment

- 2 Spatial Resolution
  - 2.1 Motivations
  - 2.2 Ingredients for resolution measurements
- 3 Cl Pos Resolution Measurements
  - 3.1 Event by Event Method
  - 3.2 Global Method
  - 3.3 Overlapping Method
- 4 Unfolding

# The Belle II Experiment



- ► International collaboration based in Japan.
- ▶ Data taking since **2019**.
- ► Comprised of asymmetric  $e^+e^-$ SuperKEKB collider (10.58 GeV) and Belle II detector.
- ► Main target : discovery of **BSM** physics.



# The Belle II Experiment



- ▶ Data taking since 2019.
- ► Current Luminosity:
  - Highest instantaneous luminosity in the world  $2.4 \times 10^{34} cm^{-2} s^{-1}$
  - Already collected 219 fb<sup>-1</sup>
- ► Luminosity target:
  - Peak luminosity  $\sim 6 \times 10^{35} \, cm^{-2} s^{-1}$
  - Collect 50 ab<sup>-1</sup>
- ► Thanks to nano-beam scheme, high current



#### Belle II Detector





T. Abe et al. Belle II Technical Design Report. 2010, E Kou et al. "The Belle II Physics Book". In: Progress of Theoretical and Experimental Physics 2019, 12 (Dec. 2019). DOI: 10.1093/ptep/ptz106

#### **SVD** roles:

- Extrapolate tracks to PXD
  - essential for reconstruction of decay vertices
  - PXD region of interest for data reduction
- Stand-alone tracking for low momentum tracks
- ▶ PID with dE/dx

#### Silicon Vertex Detector



#### SVD:

4 layers (SVD) of double-sided Si strip sensors (DSSD):

Side u/P along  $r\phi$ -direction Side v/N along z-direction



# Double Sided Strip Detector DSSD P\* strip a r [cn

floating strips

#### 3 shapes of DSSD used in ladders



Digital estimated resolution counting floating strips:

$$\sigma_{digit} = \frac{\text{Pitch}}{2\sqrt{12}} \tag{1}$$

| Layer (Side)                            | 3 (u/P) | 456 (u/P) | 3 (v/N) | 456 (v/N) |
|-----------------------------------------|---------|-----------|---------|-----------|
| Strip Pitch ( $\mu m$ )                 | 50      | 75        | 160     | 240       |
| Digital Resolution ( $\mu \mathrm{m}$ ) | 7       | 10        | 23      | 34        |

## Section 2



- 1 The Belle II Experiment
- 2 Spatial Resolution
  - 2.1 Motivations
  - 2.2 Ingredients for resolution measurements
- 3 Cl Pos Resolution Measurements
  - 3.1 Event by Event Method
  - 3.2 Global Method
  - 3.3 Overlapping Method
- 4 Unfolding



- Excellent Spatial resolution is mandatory for SVD reconstruction, crucial input for tracking:
  - Improve quality of reconstructed tracks and vertices
  - Correctly propagate uncertainty on hit's position to track parameters







#### Residuals:

Residual 
$$R = m - t$$
Track Residual  $\varepsilon_t = t - x$ 
True Residual  $\varepsilon_m = m - x$ 

#### Spatial Resolution $\sigma_{cl}$ :

$$\sigma_{cl}^2 := Var[\varepsilon_m]$$
 (2)  
:=  $E[(m-x)^2] - E[(m-x)]^2$  (3)

Nonetheless the true position *x* is only available in Monte-Carlo samples.

# Section 3



- 1 The Belle II Experiment
- 2 Spatial Resolution
  - 2.1 Motivations
  - 2.2 Ingredients for resolution measurements
- 3 Cl Pos Resolution Measurements
  - 3.1 Event by Event Method
  - 3.2 Global Method
  - 3.3 Overlapping Method
- 4 Unfolding

# **Event by Event Method**



#### Event by event method:

Subtract in quadrature the effect of the error on track extrapolation on residual:

$$\sigma_{cl}^2 = \langle R^2 - \sigma_t^2 \rangle_{trunc} \tag{4}$$

- ► Discrepancy between true and measured resolution on simulation
- ► Solved by optimising the quantile truncation on  $R^2 \sigma_t^2$  following:

$$FOM = \frac{(\sigma_{true} - \sigma_{cl})^2}{(\Delta \sigma_{cl})^2}$$
 (5)





# Event by Event Method

Data and Simulation results













- ▶ v/N Side reaches the digital resolution for perpendicular tracks (low cluster size). Smaller resolution for higher angle and cluster size.
- ► Maybe still some room for improvements on u/P side

#### Global Method



#### Global Method:

Based on Mean Absolute Deviation (MAD) as best estimator: no optimization on MC needed.

$$\sigma_{cl}^2 = \langle R^2 - \sigma_t^2 \rangle \simeq mad(R)^2 - median(\sigma_t)^2 - mad(\sigma_t)^2$$

- ▶  $mad(y) = 1.4826 \times median(|y median(y)|)$
- mad and median more robust against outliers than standard deviation and mean.







- ➤ Results in agreement with event by event method: data/MC agreement, angular distribution..
- ► The Global Method allows to estimate the spatial resolution in a robust way.
- Small discrepancies between data and simulation.





# **Overlapping Method**



#### Overlapping Method:

- Select tracks in fiducial area with two hits on the same layer and on consecutive ladders
- ► Compare residuals computed for the pair of overlapping ladder, double residuals:

$$\Delta R = R_{int} - R_{ext} \tag{6}$$

- ► Apply geometrical correction due to non-parallel sensors
- ► Resolution is the  $\sigma_{68}$  width of a Student-T distribution fit



- Marginally sensitive to Coulomb scattering
- Decouple contribution of tracking uncertainty → assuming the error on the track extrapolation cancel out in the double difference!
- Most critical side for resolutions in u/P direction, due to the reduced overlapping region: limited angle range and statistics.

CMS Tracker Collaboration. "Stand-alone Cosmic Muon Reconstruction Before Installation of the CMS Silicon Strip Tracker". In: Journal of Instrumentation 4.05 (May 2009). DOI: 10.1088/1748-

# Overlaps Data results







- ▶ Outermost v/N side layers are in agreement with expected digital resolution
- ▶ Measured resolutions with overlaps approach are larger than expected/other methods, even on simulation

### Section 4



- 1 The Belle II Experiment
- 2 Spatial Resolution
  - 2.1 Motivations
  - 2.2 Ingredients for resolution measurements
- 3 Cl Pos Resolution Measurements
  - 3.1 Event by Event Method
  - 3.2 Global Method
  - 3.3 Overlapping Method
- 4 Unfolding

# Charge coupling between strips

- ► A signal is injected on a given strip, the waveform of the adjacent channel is also checked.
- ▶ A small signal is observed on the adjacent channel with a lower time ( $\simeq 27ns$ )

#### Expected effect on strip charges:

$$charge_{obs}(a) = charge_{true}(a) + c \times charge_{true}(b)$$

Strip charge is used to compute position: impact on resolution!



# Correction by unfolding





# The observed charges follow:

$$a_i = (1-2c)A_i + c(A_{i-1} + A_{i+1})$$

From the observations on data, c = 0.1

# Correction by unfolding



To correct this effect, we link the *observed* charges to the *true* charges :

$$\begin{pmatrix} 1-2c & c & O & O \\ c & 1-2c & c & O \\ O & c & 1-2c & c \\ O & O & c & 1-2c \end{pmatrix} \begin{pmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \end{pmatrix} = \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix}$$

Then **unfold** the charges by inversion:

$$\begin{pmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \end{pmatrix} = M^{-1} \begin{pmatrix} a_1 \\ a_2 \\ a_3 \\ a_4 \end{pmatrix}$$

#### The observed charges follow:

$$a_i = (1 - 2\mathbf{c})A_i + \mathbf{c}(A_{i-1} + A_{i+1})$$

From the observations on data, c = 0.1

# Impact on resolution





- ► This correction only yields improvements for u/P side.
- lacktriangle The unfolding method improves data/MC agreement : allows to breach  $\simeq$  20 30 % of the gap.
- ► Correction implemented in the Belle II analysis software



▶ Different method developed to estimate spatial resolution :

| Event By Event Glo                       | Global                                            | Overlaps                                   |
|------------------------------------------|---------------------------------------------------|--------------------------------------------|
| Good estimation of spatial resolution Go |                                                   | Marginally sensitive to Coulomb scattering |
|                                          | No optimization needed mall Data/MC discrepancies | Estimated resolution higher than expected  |

▶ Development of the unfolding method: correction of data that improves the spatial resolution measured on u/P side.

# Thanks for your attention

# Backups



#### Cluster reconstruction

- For each cluster, computation of:
  - Charge S
  - Position x<sub>cl</sub>
  - Time t<sub>cl</sub>
- For a cluster made of n strips
- $S_{cl} = \Sigma S_{i}$
- $x_{cl} = \Sigma x_i S_i / \Sigma s_i$  (Center of gravity)
- $t_{cl} = \sum t_i S_i / \sum S_i$  (Center of gravity)





## Estimation of cluster position resolution

- We define the quantity  $\sigma^2_{cl}$  as :  $\sigma^2_{cl} = \langle res^2 \sigma^2_t \rangle = \langle res^2 \rangle \langle \sigma^2_t \rangle$ = mean(res)<sup>2</sup> - mean( $\sigma$ ,)<sup>2</sup> - std.dev( $\sigma$ ,)<sup>2</sup>
- Since the distributions are not perfectly gaussian use instead :
  - $mean(x) \approx median(x)$
  - Std.dev(x)  $\approx$  mad(x) = 1.4826\*median(|x median(x)|)
- Then  $\sigma_{cl}^2 = \text{mad(res)}^2 \text{median}(\sigma_t)^2 \text{mad}(\sigma_t)^2$



#### Errors estimation in Event by event method:

#### 1. Statistical uncertainties

Taking variance of resolution squared as variance of sample mean

$$\Delta\sigma_{Cl} = \frac{1}{2\sigma_{Cl}}\sqrt{\frac{\langle (R^2 - {\delta_t}^2)^2 \rangle - \sigma_{Cl}^4}{N}}$$

#### 2. Systematic uncertainties

Adding in quadrature:

- Variation in resolution measurement with and without selection on residual
- Variation in resolution measurement with quantile truncation at ∓0.2% (step) between optimal quantile

#### **Errors estimation in Global method:**

#### 1. Statistical uncertainties

- For median  $\frac{mad}{\sqrt{N}}$
- For mad  $\sqrt{2} \frac{mad}{\sqrt{N-1}}$

#### 2. Systemac uncertainties:

Difference with another robust estimator that should give the same result for Gaussian distributions

- For median | median midhinge| (average of the first and third quartiles)
- For mad  $|mad \sigma_{68}|$



#### Method for estimate resolution with overlapping:

- 1. Apply geometrical correction factor on double residuals
- Fit **DeltaRes** with a student's t-distribution:

$$T(X, \nu, \mu, \sigma) = \frac{exp\left(\Gamma(\frac{\nu+1}{2}) - \Gamma(\frac{\nu}{2})\right)}{\sigma\sqrt{\pi\nu}}\left(1 + \frac{(X-\mu)^2}{\sigma^2\nu}\right)^{\frac{\nu+1}{2}}$$

normalisation parameter N number of degree of freedom v mean u variance σ<sup>2</sup>

3. The resolution is the  $\sigma_{68}$  of the fitted student's t-model T

$$=\frac{\sigma_{cl}=\sigma_{68}(T(\mathbf{X},\nu,\mu,\sigma))}{\frac{\chi_{84}(T(\mathbf{X},\nu,\mu,\sigma))-\chi_{16}(T(\mathbf{X},\nu,\mu,\sigma))}{2}}$$

#### True Resoltion in Monte-Carlo:

$$\sigma_{68}(m-x)$$

Cluster position m True position x





#### Method for estimate resolution uncertainties:

- 1. Vary fitted parameters  $(N, \mu, \nu, \sigma)$  within the fit uncertainties (± Fit errors)
- Compute student's T-model with new parameters
- Taking  $\sigma_{68}$  resolution of this new model
- 4. Take as resolution uncertainty for each layer half the maximal variation of the recomputed  $\sigma_{68}$ :

 $max(\sigma_{68})-min(\sigma_{68})$ 



#### Geometrical correction:

Project parallel to the tracks, the external residual on internal ladder.

u/P Side:

$$\Delta oldsymbol{R} = rac{R_{int} - R_{ext} * C}{\sqrt{1 + C^2}}$$
 with  $oldsymbol{C} = rac{cos\ a_{ext}}{cos\ a_{int}}$ 



v/N Side:





#### Cluster unfolding method – estimation of best correction factor

- The resolution is computed for each type of sensor for different values of c ranging from 0 to 0.2
- The unfolding method does not improve the resolution on V-side sensors
- However, U-side sensors do benefit from the method, with an optimal gain with c = 0.1 for all type of sensors





#### Cluster unfolding method – estimation of best correction factor

original

- The resolution is computed for each type of sensor for different values of c ranging from 0 to 0.2
- The unfolding method does not improve the resolution on V-side sensors
- However, U-side sensors do benefit from the method, with an optimal gain with c = 0.1 for all type of sensors

| Sensors - U side | c = 0 | c = 0.05 | c = 0.1 | c = 0.15 | c = 0.20 | $^{\mathrm{MC}}$ |
|------------------|-------|----------|---------|----------|----------|------------------|
| L3.1             | 9.6   | 9.3      | 9.1     | 9.3      | 10.7     | 7.2              |
| L3.2             | 10.7  | 10.3     | 10      | 10       | 10.8     | 8.3              |
| L456 backward    | 13.1  | 12.2     | 11.9    | 13.1     | 16.3     | 9.8              |
| L456 origami     | 12.6  | 11.8     | 11.5    | 12.6     | 15.2     | 9.1              |
| l456 slanted     | 11.6  | 10.9     | 10.7    | 12       | 14.8     | 8.9              |

corrected

| Sensors - V side | c = 0 | c = 0.05 | c = 0.1 | c = 0.15 | c = 0.20 | $^{\mathrm{MC}}$ |
|------------------|-------|----------|---------|----------|----------|------------------|
| L3.1             | 25.1  | 24.5     | 24.8    | 25.6     | 27.8     | 21.1             |
| L3.2             | 17.5  | 17.5     | 19.5    | 23.8     | 30.2     | 14.1             |
| L456 backward    | 23.7  | 25.7     | 31.9    | 42.2     | 54.5     | 19.4             |
| L456 origami     | 26.5  | 28.5     | 33.4    | 40.3     | 46.2     | 22.5             |
| l456 slanted     | 29.3  | 29       | 31.2    | 37.3     | 49.6     | 23.4             |