

Radiative decays at LHCb

GDR-InF Annual Workshop, Nov. 15-17 2021 M. Chefdeville, LAPP, Annecy

Overview

- Introduction
 - RAD penguins, key observables, LHCb program
- Past-present-future
 - Published analysis
 - New baryon results
 - On-going analysis
- Outlook

Radiative $b \rightarrow (s,d)\gamma$ transitions

- Change quark chirality: $\mathbf{b}_{R} \rightarrow \mathbf{s}_{L} \boldsymbol{\gamma}_{L}$ (left-handed amplitude) or $\mathbf{b}_{L} \rightarrow \mathbf{s}_{R} \boldsymbol{\gamma}_{R}$ (RH amp.)
 - As a **FCNC**, proceeds through a loop (W & Up-type quarks) and thus CKM-suppressed
 - **Chirality flip** required on external quark lines $(SU(2)_L)$ and internal lines (avoid GIM cancellation) —
 - \rightarrow mass insertions favor flip on b-line: γ mostly LH in b \rightarrow q γ , RH amplitude suppressed by m_q/m_b

 b_R

- **Effective Hamiltonian** •
 - Hadronic final states $(V\gamma) \rightarrow EM$ dipole operators $O_{7(L,R)}$
 - Non-had. or virtual- γ final-states (I+I- γ , Vee) \rightarrow also test axial-vector and vector operators $O_{9,10}$

$$\mathcal{H}_{\rm rad} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* (C_{7R} \mathcal{O}_{7R} + C_{7L} \mathcal{O}_{7L}) \qquad \qquad \mathcal{O}_{7L,R} = \frac{e}{16\pi^2} m_b \bar{s} \sigma_{\mu\nu} \frac{1 \pm \gamma_5}{2} b F^{\mu\nu} \qquad \qquad \lambda_{\gamma}^{(i)} = \frac{|c_R^{(i)}|^2 - |c_L^{(i)}|^2}{|c_R^{(i)}|^2 + |c_L^{(i)}|^2}$$

• New physics in loop affects the transition dynamics (BR, A_{CP} , A_{I} , λ)

- Branching ratios
 - Too uncertain for NP searches (form factors $\langle V|Q_j|B\rangle$)
 - Ratio can be interesting Ali, Pecjak, Greub 2008
- Isospin asymmetries Ball et al. 2007
 - Photon from different spectator quarks (B^0, B^+)
 - Sensitive to long-distance topologies (WA, quark-loops)
- CP asymmetries
 - Small in b \rightarrow s (0.5%), larger in b \rightarrow d
- Photon polarisation
 - TD-CPV Atwood, Gronau, Soni 1997

S-term should be zero \rightarrow null-test of SM

- $\mathsf{B}^{_0}\to\,\mathsf{K}^{*_0}[\mathsf{K}_{_S}\pi^{_0}]\gamma$ or $\mathsf{K}_{_s}\pi\pi\gamma,\,\mathsf{B}_{_s}\to\,\Phi\gamma$
- Angular/Amplitude analysis

 $\mathsf{B}^{_0}\to\,\mathsf{K}^*ee$ @ low-q², $\Lambda_{_b}\to\,\Lambda^{_0}\gamma,\,\mathsf{B}_{^+}\to\,\mathsf{K}\pi\pi\gamma$

Gronau, Grossman, Pirjol, Ryd, 2002

- Constraints on CKM angle $\boldsymbol{\gamma}$
 - Ratio $|V_{td}/V_{ts}|^2$ from e.g. $K^{*}{}^{_0}\gamma$ VS $\rho{}^{_0}\gamma$

Observables

M. Matsumori, A. I. Sanda, Y.-Y. Keum, 2005

$$Br(B^0 \to K^{*0}\gamma) = (5.8 \pm 2.9) \times 10^{-5},$$
 (97)

$$Br(B^{\pm} \to K^{*\pm}\gamma) = (6.0 \pm 3.0) \times 10^{-5}.$$
 (98)

$$A_{CP}(B^0 \to K^{*0}\gamma) = -(6.1 \pm 4.6) \times 10^{-3},$$
 (105)

$$A_{CP}(B^{\pm} \to K^{*\pm}\gamma) = -(5.7 \pm 4.3) \times 10^{-3}.$$
 (106)

$$\Delta_{0+} = +(2.7 \pm 0.8) \times 10^{-2} \tag{107}$$

- Branching ratios
 - Too uncertain for NP searches (form factors $\langle V|Q_j|B\rangle$)
 - Ratio can be interesting Ali, Pecjak, Greub 2008
- Isospin asymmetries **Ball et al. 2007**
 - Photon from different spectator quarks (B^0, B^+)
 - Sensitive to long-distance topologies (WA, quark-loops)
- CP asymmetries
 - Small in b \rightarrow s (0.5%), larger in b \rightarrow d
- Photon polarisation
 - TD-CPV <u>Atwood, Gronau, Soni 1997</u>

S-term should be zero \rightarrow null-test of SM

- $\mathsf{B}^{_0}\to\,\mathsf{K}^{*_0}[\mathsf{K}_{_S}\pi^{_0}]\gamma$ or $\mathsf{K}_{_s}\pi\pi\gamma,\,\mathsf{B}_{_s}\to\,\Phi\gamma$
- Angular/Amplitude analysis

 ${\sf B}{}^{_0} \to \, {\sf K}^* ee$ @ low-q², $\Lambda_{_b} \to \Lambda^{_0} \gamma, \, {\sf B}{}^{_+} \to \, {\sf K} \pi \pi \gamma$

Gronau, Grossman, Pirjol, Ryd, 2002

- Constraints on CKM angle γ
 - Ratio $|V_{td}/V_{ts}|^2$ from e.g. $K^{*}{}^{_0}\gamma$ VS $\rho{}^{_0}\gamma$

Observables

M. Matsumori, A. I. Sanda, Y.-Y. Keum, 2005

$$Br(B^0 \to K^{*0}\gamma) = (5.8 \pm 2.9) \times 10^{-5},$$
 (97)

$$Br(B^{\pm} \to K^{*\pm}\gamma) = (6.0 \pm 3.0) \times 10^{-5}.$$
 (98)

$$A_{CP}(B^0 \to K^{*0}\gamma) = -(6.1 \pm 4.6) \times 10^{-3},$$
 (105)

$$A_{CP}(B^{\pm} \to K^{*\pm}\gamma) = -(5.7 \pm 4.3) \times 10^{-3}.$$
 (106)

$$\Delta_{0+} = +(2.7 \pm 0.8) \times 10^{-2} \tag{107}$$

- Hadronic environment
 - Several b-species produced (B_d, B_u, B_s, Λ_{b} , Ξ_{b} , Ω_{b} ...)
 - Large combinatorics (tight P_T cuts (2.5 GeV/c))
- Calorimeter system = SPD + PRS + ECAL + HCAL
 - Shashlik Pb-Scintillators, $10\%/\sqrt{E[GeV]} + 1\%$
 - Folded with position resolution, yields $\sigma(m_{\rm B})\thickapprox90$ MeV
 - \rightarrow careful modeling of partially reco'ed &peaking bkgs

Radiatives at LHCb

- Photons converting before the magnet can be reco'ed as an e⁺e⁻ pair: 5-10% of calo photon yield but $\sigma(m_B) = 30-50$ MeV (depending on e-track category)
- Particle ID tools to mitigate e.g. pi0 reco'ed as photons from charmless B decays

LHCb-PUB-2015-016

6

Physics coverage & published analysis

Semi-inclusive HLT & offline strategy

 + exclusive selections for (baryons, γγ, l+l-γ)
 → wide shopping list of promising channels

 Radiative stripping lines based on Long noPID pion(s) + gamma 	
• (h ⁺ h ⁻) + γ : covering K [*] γ , $\phi\gamma$, $\rho\gamma$, $\Lambda^*\gamma$, K ^{**} γ , f' ₂ γ ,	
• $(h^{+}h^{+})$ + γ : covering $K_1^{+}(K\pi\pi)\gamma, (\pi\pi\pi)\gamma,$	
• $(h^{+}h^{+}h^{-})$ + γ : covering VV γ	
• (h^+h^-) + π^0 + γ : covering $K_1^0(K^+\pi^-\pi^0)\gamma$, $\omega(\pi^+\pi^-\pi^0)\gamma$,	
• (h^+h^-) + K _s K _s + γ : covering K ^{*+} K ^{*-} γ ,	
• (h^+h^-) + K _s + γ : covering $K_1^{0}(K_s\pi^+\pi^-)\gamma$, $K^{*+}K^-\gamma$,	
• (h^{+}) + K _s + γ : covering B ⁺ -> K ^{*+} γ ,	
• $(h^{+}h^{-}) + \Lambda^{-} + \gamma^{-}$: covering Λ_{h}	
• $(h^{+}h^{-}) + \Lambda + \gamma$: covering Λ_{h}	
 Radiative lines based on Long noPID pion(s) + converted gamma 	(LL+DD)
• (h ⁺ h ⁻) + y(->ee)	
• $(h^{+}h^{-}h^{+})$ + $\gamma(->ee)$	
• Exclusive stripping lines : $\Lambda_{1} \rightarrow \Lambda_{2}$, $\Lambda_{2} \rightarrow \Lambda(\gamma \rightarrow ee)$ and control channels	
• Recently added : triager path for $Bs \rightarrow yy$, b-baryons	

• New baryon results

* Search for $\Xi_{\rm b^-}\to \Xi^-~\gamma$ (Run2 5.4 fb-1), <u>LHCb-PAPER-2021-017</u>

* Photon polarization in $\Lambda_b \rightarrow \Lambda \gamma$ decays (Run2 6 fb⁻¹), LHCb-PAPER-2021-030 (in preparation) 7

• Published analysis

BR(KstG)/BR(PhiG) - Run1 1 fb ⁻¹
Phys. Rev. D 85 (2012) 112013
+ACP(K*G)
Nucl. Phys. B867 (2013) 1
G.Pol in KpipiG Run1 3 fb ⁻¹
Phys. Rev. Lett. 112 (2014) 161801
AngAna K*ee Run1 3 fb ⁻¹
J. High Energ. Phys. 04 (2015) 64
Search for JpsiG Run1 3 fb ⁻¹
Phys. Rev. D 92 (2015) 112002
TD-CPV PhiG Run1 3 fb ⁻¹
Phys. Rev. Lett. 118 (2017) 021801
Phys. Rev. Lett. 123 (2019) 081802
Observation L0G Run2 1.7 fb ⁻¹
Phys. Rev. Lett. 123 (2019) 031801
Ang.Ana. K*ee Run1+2 9 fb ⁻¹
JHEP 12 (2020) 081

Radiative baryon decays

- Nonzero b-baryon spin \rightarrow direct access to γ -polarisation (*Eur. Phys. J. C 79 (2019) 634*)
- Challenging experimental signatures as secondary vertex is not reconstructed
- First observation of $\Lambda_b \rightarrow \Lambda^0 \gamma$ (2016 data, <u>PRL 123 031801 (2019)</u>)
- Triggered theory work from R. Wang et al. arxiv:2008.06624

The angular distribution is:

$$W(\theta_A, \theta_p) \propto 1 - \alpha_A P_{A_b} \cos \theta_p \cos \theta_A - \alpha_\gamma (\alpha_A \cos \theta_p - P_{A_b} \cos \theta_A)$$
(2)

Here, P_{Λ_b} is the initial Λ_b polarization and α_{Λ} is the Λ^0 weak decay parameter, defined in Table 1.

Observables	Experimental data $[5]$	Our $SU(3)$ IRA predictions	Other predictions
b ightarrow s :			
$\mathcal{B}(\Lambda_b^0\to\Lambda\gamma)(\times10^{-6})$	7.1 ± 1.7	7.1 ± 3.4	7.3 ± 1.5 [69]
$\mathcal{B}(\Lambda^0_b\to\Sigma^0\gamma)$		0	
$\mathcal{B}(\Xi_b^-\to\Xi^-\gamma)(\times10^{-5})$		1.23 ± 0.64	
$\mathcal{B}(\Xi_b^0\to\Xi^0\gamma)(\times10^{-5})$		1.16 ± 0.60	
b ightarrow d :			
$\mathcal{B}(\Lambda_b^0 \to n\gamma)(\times 10^{-7})$		5.03 ± 2.67	${}^{3.69}_{-1.95}{}^{+3.76}_{-1.95}_$
$\mathcal{B}(\Xi_b^0\to\Lambda^0\gamma)(\times10^{-8})$		9.17 ± 5.10	
$\mathcal{B}(\Xi_b^0\to\Sigma^0\gamma)(\times10^{-7})$		2.71 ± 1.50	
$\mathcal{B}(\Xi_b^-\to\Sigma^-\gamma)(\times10^{-7})$		5.74 ± 3.21	

Cabibbo-favoured $\Lambda_{_{b}}\to\Lambda^{_{0}}\gamma$ and $\Xi_{_{b}}^{^{-}}\to\Xi^{^{-}}\gamma$

Radiative baryon decays

- Nonzero b-baryon spin \rightarrow direct access to γ -polarisation (*Eur. Phys. J. C 79 (2019) 634*)
- Challenging experimental signatures as secondary vertex is not reconstructed
- First observation of $\Lambda_b \rightarrow \Lambda^0 \gamma$ (2016 data, <u>PRL 123 031801 (2019)</u>)
- Triggered theory work from R. Wang et al. arxiv:2008.06624

 $W(\eta, \theta_A, \theta_p, \theta_{\Xi}) \propto 1 + \alpha_A \alpha_{\Xi} \cos \theta_p + \alpha_\gamma \alpha_{\Xi} \cos \theta_A$ $+ \alpha_A \alpha_\gamma \cos \theta_p \cos \theta_A - 2\alpha_A \alpha_\gamma \operatorname{Re}(e^{i\eta} z_{\Xi}) \sin \theta_p \sin \theta_A$ $- P_{\Xi_b} \alpha_{\Xi} \cos \theta_{\Xi} \cos \theta_A - P_{\Xi_b} \alpha_\gamma \cos \theta_{\Xi}$ (4) $- P_{\Xi_b} \alpha_{\Xi} \alpha_A \alpha_\gamma \cos \theta_{\Xi} \cos \theta_p - P_{\Xi_b} \alpha_A \cos \theta_{\Xi} \cos \theta_A \cos \theta_p$ $+ 2\alpha_A P_{\Xi_b} \operatorname{Re}(e^{i\eta} z_{\Xi}) \cos \theta_{\Xi} \sin \theta_p \sin \theta_A,$

Fig. 2. Schematic view of the $\Xi_b^- \to \Xi^- \gamma$ decay.

Observables	Experimental data $[5]$	Our $SU(3)$ IRA predictions	Other predictions
$b \rightarrow s$:			
$\mathcal{B}(\Lambda_b^0\to\Lambda\gamma)(\times10^{-6})$	7.1 ± 1.7	7.1 ± 3.4	7.3 ± 1.5 [69]
$\mathcal{B}(\Lambda^0_b\to\Sigma^0\gamma)$		0	
$\mathcal{B}(\Xi_b^-\to\Xi^-\gamma)(\times10^{-5})$		1.23 ± 0.64	
$\mathcal{B}(\Xi_b^0\to\Xi^0\gamma)(\times10^{-5})$		1.16 ± 0.60	
b ightarrow d :			
$\mathcal{B}(\Lambda_b^0 \to n\gamma) (\times 10^{-7})$		5.03 ± 2.67	${}^{3.69}_{-1.95}{}^{+3.76}_{-1.95}_$
$\mathcal{B}(\Xi_b^0\to\Lambda^0\gamma)(\times10^{-8})$		9.17 ± 5.10	
$\mathcal{B}(\Xi_b^0\to\Sigma^0\gamma)(\times10^{-7})$		2.71 ± 1.50	
$\mathcal{B}(\Xi_b^-\to \Sigma^-\gamma)(\times 10^{-7})$		5.74 ± 3.21	

Cabibbo-favoured $\Lambda_{\rm b} \to \Lambda^0 \gamma$ and $\Xi_{\rm b}^- \to \Xi^- \gamma$

Search for $\Xi_{b}^{-} \rightarrow \Xi^{-} \gamma$ (1/2)

LHCb-PAPER-2021-017

- Uses 5.4 fb⁻¹ of Run2 LHCb data
- Strategy:
 - Consider only (LLL-)decays contained in VELO (trigger bandwidth)
 - Clean reconstructed Ξ and $\Lambda \rightarrow$ mass windows
 - Multi-variate classifier to discriminate signal from bkg
 - Normalisation and control with $\equiv_{b^-} \rightarrow \equiv_- J/\Psi$

Long track: use Vtx det. Down track: don't

Search for $\Xi_{b}^{-} \rightarrow \Xi^{-} \gamma$ (2/2)

LHCb-PAPER-2021-017

• Simultaneous fit to signal and control modes

 $N(\Xi \gamma) = (-3.6 \pm 3.9)$ and $N(\Xi J/\Psi) = (1407 \pm 52)$

• Limit on branching fraction ($B_{\text{theo}} = 1.23 \times 10^{-5}$)

 $\mathcal{B}(\Xi_b^- \to \Xi^- \gamma) < 1.3 \, (0.6) \times 10^{-4} \text{ at } 95\% \, (90\%) \text{ CL}$

- Dominated by J/Ψ mode BF
- Largely improved sensitivity in Run3 (trigger & luminosity)

Source	Uncertainty $(\%)$
Mass fit model (signal)	9.1
Mass fit model (background)	7.8
Efficiency ratio	4.6
Hardware trigger	10.0
Simulation/Data agreement	6.0
$\mathcal{B}(\varXi_b^- \to \varXi^- J/\psi)$	45.6
Sum in quadrature	48.7

Photon polarization in $\Lambda_{\rm b} \rightarrow \Lambda \gamma$ (1/2)

- First angular analysis of radiative b-baryon decays (6 fb⁻¹ of Run2 data)
 - Follows first observation of (65 ± 13) events in 2016 data (Phys. Rev. Lett. 123 (2019) 031801)
 - $B(\Lambda_b \rightarrow \Lambda \gamma) = (7.1 \pm 1.5) \times 10^{-6}$
- Extract γ -polarisation (α_{γ}) from proton helicity angle θ_{p} (α_{Λ} : Λ weak decay parameter, BESIII input)
- Strategy:

1) Mass fit to m(p $\pi\gamma$) \rightarrow (440 ± 40) events

2) Angular fit in signal region: Signal from simulation (controlled with J/Ψ mode), Bkg from m(p $\pi\gamma$) sidebands

$$\frac{\mathrm{d}\Gamma}{\mathrm{d}\left(\cos\theta_{p}\right)} \propto 1 - \alpha_{\gamma}\alpha_{\Lambda}\cos\theta_{p},$$

LHCb-PAPER-2021-030

In prep.

12

Photon polarization in $\Lambda_{\rm b} \rightarrow \Lambda \gamma$ (2/2)

- Results
 - Angular fit yields α_{γ} = (0.82 \pm 0.23)
 - To reflect physical bounds $[-1,1] \rightarrow$ confidence interval set using the Feldman Cousins technique Determine true VS measured value by pseudo-experiments , including stat. and syst. uncertainties
- Uncertainties dominated by statistics (Run3!), main systematics from **bkg modeling of** θ_p
- Slipt sample according to pion charge \rightarrow polarisation compatible with 1 (i.e. LH) for $\overline{\Lambda}_{b} \& \Lambda_{b}$

LHCb-PAPER-2021-030

In prep.

What's next? (1/2) (on-going analysis on full dataset)

- Amplitude analysis
 - Separate vector and tensor contributions in $\mathsf{B}_{\mathsf{s}} \to \mathsf{K}\mathsf{K}\gamma,\,\mathsf{B}_{\mathsf{d}} \to \mathsf{K}\pi\gamma$

Better understanding of non-resonant & high-mass contamination in $\varphi\gamma$ and K* γ Inclusive VS sum of exclusive (predictions in <u>Ebert et al. 2001</u>)

- From up-down asymmetry to γ -polarisation in B+ $\rightarrow K\pi\pi\gamma$ Large sample size $\rightarrow \sigma_{stat}(\lambda) = 0.014$ (*Bellée et al, 2019*)

Precise knowledge of interfering resonances needed (model building)

 $[\]hat{p}_3$ \vec{p}_1 \hat{p}_2 \vec{p}_2

LHCb simulation unofficial

What's next? (2/2) (on-going analysis on full dataset)

- Suppressed modes
 - $B_d \to \rho^{_0}\gamma$ with calorimetric photons (1000 events expected)

Optimisation in 2 steps: X-feeds (K π , KK, p π), combinatorics (BDT)

– $B_s \to \overline{K}{}^*\gamma$ with converted photons (140 events expected)

Signal mass shapes and sensitivity depends on electron track category and if Brem photons were added

• Others: TD-CPV ($K_s \pi \pi \gamma$, Update Run1 result $\phi \gamma$), BF & asymmetries (hh γ , K+K-, K+ π -, K $_s \pi_{15} pK$)

Outlook

• LHCb provides a unique laboratory for precise measurements in radiative decays

With connections with anomalies in b2sll: fix $C_7(')$ in global fits of $C_{9,10}$, charm-loops contribute to radiative observables, converted photons can be used as cross-checks of RX-electrons etc...

- Several final-states still to be explored $(3h\gamma, 4h\gamma)$
 - * γ polarisation in $\mathsf{B}^{_{+}}\to$ $\mathsf{K}^{_{+}}\pi^{_{-}}\pi^{_{+}}\gamma$ will be systematics limited
 - \rightarrow could other hhh systems be more advantageous?
 - e.g. B+ \rightarrow K+K-K+ γ (CF) and KK $\pi\gamma$ or $\pi^+\pi^-\pi^+\gamma$ (CS)
 - * Exhaustive list of **B** → **PV**γ decays (<u>Atwood et al., 2007</u>)
 - \rightarrow final states with K_{S} do-able while $\pi^{_0}$ nearly impossible

$b ightarrow s\gamma$	$b ightarrow d\gamma$
$B^+ \to K^+ \rho^0 \gamma, K^+ \omega \gamma, K^+ \phi \gamma$	$B^+ \to \pi^+ \rho^0 \gamma, \pi^+ \omega \gamma, \pi^+ \phi \gamma$
$B^+ \rightarrow K^0 \rho^+ \gamma$	$B^{\overline{+}} \rightarrow K^{+} \bar{K}^{*0} \gamma$
$B^+ o \pi^+ K^{*0} \gamma$	$B^+ \to \overline{\bar{K}^0 K^{*+} \gamma}$
$B^+ \to \pi^0 K^{*+} \gamma, \overline{\eta K^{*+} \gamma}, \eta' K^{*+} \gamma$	$B^+ \to \pi^0 \rho^+ \overline{\gamma, \eta \rho^+ \gamma, \eta' \rho^+ \gamma}$
$B^0 o K^+ ho^- \gamma$	$B^0 \to \pi^+ \rho^- \gamma, K^+ K^{*-} \gamma$
$B^0 ightarrow K^0 ho^0 \gamma, K^0 \omega \gamma, K^0 \phi \gamma$	$B^0 o \pi^0 \rho^0 \gamma, \pi^0 \overline{\omega} \gamma, \pi^0 \phi \overline{\gamma}$
$\overline{B^0 \to \pi^- K^{*+} \gamma}$	$B^0 ightarrow \pi^- ho^+ \gamma, \ K^- K^{*+} \gamma$
$B^0 \to \pi^0 K^{*0} \gamma, \eta K^{*0} \gamma, \eta' K^{*0} \gamma$	$B^0 o \eta \rho^0 \gamma, \eta \overline{\omega \gamma, \eta \phi \gamma}$
	$B^0 o \eta' ho^0 \gamma, \eta' \omega \gamma, \eta' \phi \gamma$
$B_s o K^+ K^{*-} \gamma$	$B_s o \pi^+ K^{*-} \gamma$
$B_s o \eta ho^0 \overline{\gamma, \eta \omega \gamma, \eta} \phi \gamma$	$B_s \to \overline{K^0} \rho^0 \overline{\gamma, \bar{K}^0 \omega \gamma, \bar{K}^0 \phi \gamma}$
$B_s o \eta' ho^0 \gamma, \eta' \omega \gamma, \eta' \phi \gamma$	
$B_s \to K^- K^{*+} \gamma$	$B_s \to K^- \rho^+ \gamma$
$B_s \to \pi^0 \overline{\phi \gamma, \eta \phi \gamma, \eta}' \phi \gamma$	$B_s \to \pi^0 K^{*0} \gamma, \eta K^{*0} \gamma, \eta' K^{*0} \gamma$

Outlook

• LHCb provides a unique laboratory for precise measurements in radiative decays

With connections with anomalies in b2sll: fix $C_7(`)$ in global fits of $C_{9,10}$, charm-loops contribute to radiative observables, converted photons can be used as cross-checks of RX-electrons etc...

And there are simply too many "modes", that's all. Cut a few and it will be perfect.

- Several final-states still to be explored $(3h\gamma, 4h\gamma)$
 - * γ polarisation in $\mathsf{B}^{_{+}}\to$ $\mathsf{K}^{_{+}}\pi^{_{-}}\pi^{_{+}}\gamma$ will be systematics limited
 - \rightarrow could other hhh systems be more advantageous?
 - e.g. B+ \rightarrow K+K-K+ γ (CF) and KK $\pi\gamma$ or $\pi^+\pi^-\pi^+\gamma$ (CS)
 - * Exhaustive list of **B** → **PV**γ decays (<u>Atwood et al., 2007</u>)
 - \rightarrow final states with K_{S} do-able while $\pi^{_0}$ nearly impossible

Outlook

- LHCb provides a unique laboratory for precise measurements in radiative decays
- Several final-states still to be explored $(3h\gamma, 4h\gamma)$
 - * γ polarisation in $\mathsf{B}^{_{+}}\to \mathsf{K}^{_{+}}\pi^{_{-}}\pi^{_{+}}\gamma$ will be systematics limited
 - \rightarrow could other hhh systems be more advantageous?

e.g. B+ \rightarrow K+K-K+ γ (CF) and KK $\pi\gamma$ or π + π - π + γ (CS)

- * Exhaustive list of $\mathbf{B} \rightarrow \mathbf{PV\gamma}$ decays (<u>Atwood et al., 2007</u>)
- \rightarrow final states with K_{S} do-able while $\pi^{_0}$ nearly impossible

$b ightarrow s\gamma$	$b ightarrow d\gamma$
$B^+ \to K^+ \rho^0 \gamma, K^+ \omega \gamma, K^+ \phi \gamma$	$B^+ \to \pi^+ \rho^0 \gamma, \pi^+ \omega \gamma, \pi^+ \phi \gamma$
$B^+ \rightarrow K^0 \rho^+ \gamma$	$B^{+} \rightarrow K^{+} \bar{K}^{*0} \gamma$
$B^+ \to \pi^+ K^{*0} \gamma$	$B^+ \to \overline{\bar{K}^0 K^{*+} \gamma}$
$B^+ \to \pi^0 K^{*+} \gamma, \overline{\eta K^{*+} \gamma}, \eta' K^{*+} \gamma$	$B^+ \to \pi^0 \rho^+ \overline{\gamma, \eta \rho^+ \gamma, \eta' \rho^+ \gamma}$
$B^0 \to K^+ \rho^- \gamma$	$B^0 \to \pi^+ \rho^- \gamma, \ K^+ K^{*-} \gamma$
$B^0 \to K^0 \rho^0 \gamma, K^0 \omega \gamma, K^0 \phi \gamma$	$B^0 \to \pi^0 \rho^0 \gamma, \pi^0 \overline{\omega} \gamma, \pi^0 \overline{\phi} \gamma$
$\overline{B^0 o \pi^- K^{*+} \gamma}$	$B^0 \to \pi^- \rho^+ \gamma, K^- K^{*+} \gamma$
$B^0 \to \pi^0 K^{*0} \gamma, \overline{\eta K^{*0} \gamma}, \overline{\eta' K^{*0} \gamma}$	$B^0 \to \eta \rho^0 \gamma, \eta \overline{\omega \gamma, \eta \phi \gamma}$
	$B^0 o \eta' ho^0 \gamma, \eta' \omega \gamma, \eta' \phi \gamma$
$B_s \to K^+ K^{*-} \gamma$	$B_s \to \pi^+ K^{*-} \gamma$
$B_s o \eta ho^0 \overline{\gamma, \eta \omega \gamma, \eta} \phi \gamma$	$B_s \to \overline{\bar{K}^0} \rho^0 \overline{\gamma, \bar{K}^0 \omega \gamma, \bar{K}^0 \phi \gamma}$
$B_s ightarrow \eta' ho^0 \gamma, \eta' \omega \gamma, \eta' \phi \gamma$	
$B_s \to K^- K^{*+} \gamma$	$B_s \to K^- \rho^+ \gamma$
$B_s o \pi^0 \phi \overline{\gamma, \eta \phi \gamma, \eta'} \phi \gamma$	$B_s \to \pi^0 K^{*0} \gamma, \eta K^{*0} \gamma, \eta' K^{*0} \gamma$

- **Run3** statistics will boost all statistically limited analysis (baryons, TD-CPV, b2c γ , non-hadronics) New data-taking paradigm \rightarrow signal selections in trigger (watch out for exotic signatures)
- New decay modes or analysis tools? Speak up!
 - * Mesons made of two heavy quarks $(B_{c^+} \rightarrow D_{(s)}^{*+} \gamma)$, more EWP @ low-q² (ϕe^+e^- , $K\pi\pi e^+e^-$)
 - * Partial reconstruction (B $\rightarrow \mu\mu(\gamma)$, K $\pi(\pi^0)\gamma$), improved converted photon reconstruction

Backups

$B^0 \to K^* e^+ e^- ext{ at very low } q^2$ [JHEP 2012 (2020) 081]

Run 1+2 (9 fb^{-1}) analysis.

Decay is dominated by $b \rightarrow s\gamma$ pole at very low $q^2 \in [0.0008 - 0.257] \text{ GeV}^2$.

Three relevant angles:

• $\theta_l, \theta_K, \tilde{\phi}$ Four angular observables:

• $F_{\rm L}, A_{\rm T}^{\rm Re}, A_{\rm T}^{(2)}, A_{\rm T}^{\rm Im}$

Sensitive to the polarization of the virtual photon.

$$\begin{split} A_{\rm R(L)} &\equiv A_{\rm R(L)} e^{i\phi_{\rm R(L)}}, \ \tan\chi \equiv |C_7'/C_7| \\ A_{\rm T}^{(2)} &\simeq \sin(2\chi) \cos(\phi_{\rm L} - \phi_{\rm R}), \\ A_{\rm T}^{\rm Im} &\simeq \sin(2\chi) \sin(\phi_{\rm L} - \phi_{\rm R}), \end{split}$$

[Nucl. Phys. B854 (2012) 321]

 $\begin{aligned} \frac{1}{\mathrm{d}(\Gamma + \bar{\Gamma})/\mathrm{d}q^2} \frac{\mathrm{d}^4(\Gamma + \bar{\Gamma})}{\mathrm{d}q^2 \mathrm{d}\cos\theta_\ell \mathrm{d}\cos\theta_\ell \mathrm{d}\cos\theta_K \mathrm{d}\tilde{\phi}} = \\ &= \frac{9}{16\pi} \bigg[\frac{3}{4} (1 - F_\mathrm{L}) \sin^2\theta_K + F_\mathrm{L} \cos^2\theta_K \\ &\quad + \frac{1}{4} (1 - F_\mathrm{L}) \sin^2\theta_K \cos 2\theta_\ell - F_\mathrm{L} \cos^2\theta_K \cos 2\theta_\ell \\ &\quad + (1 - F_\mathrm{L}) A_\mathrm{T}^{\mathrm{Re}} \sin^2\theta_K \cos \theta_\ell \\ &\quad + \frac{1}{2} (1 - F_\mathrm{L}) A_\mathrm{T}^{(2)} \sin^2\theta_K \sin^2\theta_\ell \cos 2\tilde{\phi} \end{aligned}$

$$+\frac{1}{2}(1-F_{\rm L})A_{\rm T}^{\rm Im}\sin^2\theta_K\sin^2\theta_\ell\sin 2\tilde{\phi}$$

 $B^0 \rightarrow K^* e^+ e^-$ results

[JHEP 2012 (2020) 081]

Simultaneous fit: $m(K^+\pi^-e^+e^-)$, $\cos\theta_l$, $\cos\theta_K$, $\tilde{\phi}$

EPS-HEP (Virtual)

long-distance

isospin asymmetry

weak annihilation CKM-enhanced b→d

topologies

background right-handed currents В

quark-loop

Guadagnoli, Reboud, Zwicky, 2018

Figure 1: Short-distance diagrams contributing to the $\bar{B}^0_s \to \mu^+ \mu^- \gamma$ process to lowest order. The black and the grey circles denote the insertion of the four-fermion operators $\mathcal{O}^{(\prime)}_{9,10}$ and respectively of $\mathcal{O}^{(\prime)}_{7}$. The form factors $T_{\perp,\parallel}(q^2, 0)$ and $T_{\perp,\parallel}(0, q^2)$ describe the diagrams (a, b) and (c, d) respectively. Diagrams (e) and (f) are described by the $V_{\perp,\parallel}(q^2)$ form factors and diagrams (g) and (h) encode bremsstrahlung contributions, whose hadronic matrix elements are described by the \bar{B}^0_s decay constant.

Figure 4: Comparison between (left panel) the theoretical error in the $B_s^0 \to \mu^+ \mu^- \gamma$ spectrum and (right panel) the corresponding error on r_{γ} as defined in eq. (19).

Comment on "non-hadronic" rare decay $B \rightarrow \gamma \ell \ell$

- It's an **FCNC** there's a whole zoo of LD-contributions cf. Wang's talk no clear advantage over $B \rightarrow K^* \ell \ell$
- Even form factor SD contribution has a hadronic component (the photon hadronises into $\rho \omega' s$ e.g. **photon distribution amplitude**)

• Photon DA: in large model independent description $\gamma - \rho$ mixing

24

TD-CPV PhiG <u>CERN-THESIS-2018-429</u> C. Matordomo

$$\mathcal{A}_{\phi\gamma}^{\Delta} \simeq \frac{2 \operatorname{Re} \left(e^{-i\phi_s} C_7 C_7' \right)}{\left| C_7 \right|^2 + \left| C_7' \right|^2},$$
$$\mathcal{S}_{\phi\gamma} \simeq \frac{2 \operatorname{Im} \left(e^{-i\phi_s} C_7 C_7' \right)}{\left| C_7 \right|^2 + \left| C_7' \right|^2},$$

$$\mathbf{B}_{\mathbf{d}} \quad \Gamma(t) \equiv \Gamma(B_q(t) \to M^0 \gamma) = e^{-\Gamma t} |A|^2 [1 + \xi \sin(2\psi) \sin(\phi_M - \phi_L - \phi_R) \sin(\Delta m t)]$$

$$\mathbf{B}_{\mathbf{s}} \qquad \frac{e^{-\Gamma_{s}t} \left\{ \cosh\left(\Delta\Gamma_{s}t/2\right) - \mathcal{A}^{\Delta}\sinh\left(\Delta\Gamma_{s}t/2\right) + \zeta \,\mathcal{C}\cos\left(\Delta m_{s}t\right) - \zeta \,\mathcal{S}\sin\left(\Delta m_{s}t\right) \right\}}{\mathcal{A}^{\Delta} = \sin\left(2\psi\right), \text{ where } \tan\psi \equiv |A(\overline{B}_{s}^{0} \to \phi\gamma_{\mathrm{R}})|/|A(\overline{B}_{s}^{0} \to \phi\gamma_{\mathrm{L}})|}$$

A time-dependent analysis of the $B_s^0 \rightarrow \phi \gamma$ decay rate is performed to determine the *CP* -violating observables $S_{\phi\gamma}$ and $C_{\phi\gamma}$ and the mixing-induced observable $\mathcal{A}_{\phi\gamma}^{\Delta}$. The measurement is based on a sample of pp collision data recorded with the LHCb detector, corresponding to an integrated luminosity of 3 fb⁻¹ at center-of-mass energies of 7 and 8 TeV. The measured values are $S_{\phi\gamma} = 0.43 \pm 0.30 \pm 0.11$, $C_{\phi\gamma} = 0.11 \pm 0.29 \pm 0.11$, and $\mathcal{A}_{\phi\gamma}^{\Delta} = -0.67^{+0.37}_{-0.41} \pm 0.17$, where the first uncertainty is statistical and the second systematic. This is the first measurement of the observables *S* and *C* in radiative B_s^0 decays. The results are consistent with the standard model predictions.

DOI: 10.1103/PhysRevLett.123.081802

Which NP models we are targeting?

What types of new physics models?

For example, models with right-handed neutrino, or custodial symmetry in general induces the right handed current.

• Which flavour/Dirac structure?

The models that contain new particles which change the chirality inside of the b \rightarrow s γ loop can induce a large chiral enhancement!

Left-Right symmetric model: mt/mb

Cho, Misiak, PRD49, '94 Babu et al PLB333 '94 SUSY with δ_{RL} mass insertions: m_{SUSY}/mb

Gabbiani, et al. NPB477 '96 Ball, EK, Khalil, PRD69 '04 NP signal beyond the constraints from Bs oscillation parameters possible.

R

R

Chiral enhancement in LRSM

Right handed-photon contribution

