Measurements of the Unitarity Triangle angle γ at LHCb

Anton Poluektov

Aix Marseille Univ, CNRS/IN2P3, CPPM, Marseille, France

17 November 2021

GDR InF 2021

Unitarity Triangle measurements

Cabibbo-Kobayashi-Maskawa matrix

$$V_{CKM} = \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight) \simeq \left(egin{array}{ccc} 1 - \lambda^2/2 & \lambda & A\lambda^3(
ho - i\eta) \ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \ A\lambda^3(1 -
ho - i\eta) & -A\lambda^2 & 1 \end{array}
ight)$$

Sensitivity to BSM effects from the global consistency of various measurements

Unitarity Triangle measurements

Cabibbo-Kobayashi-Maskawa matrix

$$V_{CKM} = \left(egin{array}{ccc} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{array}
ight) \simeq \left(egin{array}{ccc} 1 - \lambda^2/2 & \lambda & A\lambda^3(
ho - i\eta) \ -\lambda & 1 - \lambda^2/2 & A\lambda^2 \ A\lambda^3(1 -
ho - i\eta) & -A\lambda^2 & 1 \end{array}
ight)$$

Sensitivity to BSM effects from the global consistency of various measurements

Unitarity Triangle angle γ/ϕ_3

- Measured entirely in tree-level decays.
- All hadronic parameters can be constrained from experiment
 - \Rightarrow theoretically very clean (uncertainty $< 10^{-7}$)

 [Brod, Zupan, JHEP 1401 (2014) 051]
- Combination of many different modes:
 - Time-integrated asymmetries in $B \rightarrow DK$, $B \rightarrow DK^*$, $B \rightarrow DK\pi$ with $D \rightarrow hh$, hhhhh ("ADS", "GLW")
 - Dalitz plot analyses of $D^0 oup K^0_S h^+ h^-$ from B oup DK, $B oup DK^*$ ("Dalitz" or "BPGGSZ")
 - Time-dependent analyses, e.g. $B_s^0 o D_s K$, $B^0 o D\pi$

Rate for $B \to DX$, $D \to f$ decay chain or its *CP*-conjugate:

$$\Gamma \propto r_D^2 + r_B^2 + 2\kappa r_D r_B \cos(\delta_B - \delta_D \pm \gamma)$$

Experimental observables:

 r_B : ratio of $b \rightarrow u$ and $b \rightarrow c$ amplitudes

 r_D : ratio of $D^0 o f$ and $\bar D^0 o f$ amplitudes $(\equiv 1 \text{ for } D_{CP})$

 δ_B and δ_D : corresponding strong phase differences

 κ : coherence factor:

 \equiv 1 for 2-body decays

< 1 if integrating over (non-constant) amplitude

Take $M B \rightarrow DX$ modes, $N D \rightarrow f$ modes:

- $ightharpoonup \sim (M \times N)$ measurements
- $\sim (M+N)$ unknowns (factorisation!)
- ⇒ system of equations solvable w/o any theory input!

For multibody decays, can consider different kinematic regions as different decays, so γ measurement possible with only a single mode

Optical analogy: double-slit interferometer

Accuracy depends on the contrast of interference pattern

- lacksquare Determined by the ratio of two amplitudes, and by the coherence factor $\kappa.$
- Even if two amplitudes are large, $\kappa \simeq 0 \Rightarrow$ no sensitivity to γ .
 - Can happen e.g. if amplitudes are oscillating in the region of integration
- Want to keep two amplitudes as coherent as possible.

γ from *CP*-asymmetric rates (GLW, ADS)

GLW mode: $D \rightarrow CP$ eigenstate

[PLB 777 (2018) 16]

$$r_B \simeq 0.1, r_D = 1$$

ADS mode: $D o ext{doubly Cabibbo-suppressed state}$.

[JHEP 04 (2021) 081]

$$r_B \simeq 0.1, \; r_D \simeq 0.06. \; \textit{Higher contrast}$$

γ from $B^{\pm} \to DK^{\pm}$, $D \to K_{\rm S}^0 \pi^+ \pi^-$

Dalitz plot density: $d\sigma(m_+^2,m_-^2)\sim |A|^2dm_+^2dm_-^2$, where $m_\pm^2=m_{K_S\pi^\pm}^2$

Flavour D amplitude: $A_D(m_+^2, m_-^2)$

Amplitude of $D \to K_{\rm S}^0 \pi^+ \pi^-$ from $B^+ \to DK^+$:

$$A_B(m_+^2,m_-^2) = A_D(m_+^2,m_-^2) + r_B e^{i\delta_B + i\gamma} A_D(m_-^2,m_+^2)$$

$$+ r_B e^{i\delta_B + i\gamma}$$

- $B^+ \to DK^+$ modes: $r_B \simeq 0.1$. Need to know the strong phase difference between D^0 and \bar{D}^0
 - From A_D model \Rightarrow uncertainty
 - From B data themselves: low precision
- lacktriangle Quantum-coherent $D^0 ar{D}^0$ pairs at CLEO, BESIII: $|D_1^0 ar{D}_2^0 ar{D}_1^0 D_2^0|$
 - lacktriangle Maximal possible coherence \Rightarrow precisely constrain the strong phase.
 - Need to use external information from low-energy e^+e^- experiment.
- Intermediate case: neutral $B^0 o DK\pi$, $r_B \simeq 0.3$ [talk by Yuya Shimizu]
 - lacksquare Correlated 3-body decays of both B and D: double Dalitz plot analysis!

[JHEP 02 (2021) 169]

Full LHCb dataset: 2011–2018 (Run I + II), $\int \mathcal{L}dt = 9$ fb⁻¹ at $\sqrt{s} = 7, 8, 13$ TeV Samples used: $B^{\pm} \to Dh^{\pm}$ ($h = K, \pi$) with $D \to K_S^0 \pi^+ \pi^-$ and $D \to K_S^0 K^+ K^-$

Larger admixture of opposite-flavour amplitude, $r_B \simeq 0.1$.

CP asymmetry now visible by eye.

[JHEP 02 (2021) 169]

Full LHCb dataset: 2011–2018 (Run I + II), $\int \mathcal{L}dt = 9$ fb⁻¹ at $\sqrt{s} = 7, 8, 13$ TeV Samples used: $B^{\pm} \to Dh^{\pm}$ ($h = K, \pi$) with $D \to K_S^0 \pi^+ \pi^-$ and $D \to K_S^0 K^+ K^-$

Larger admixture of opposite-flavour amplitude, $r_B \simeq 0.1$.

CP asymmetry now visible by eye.

Binned model-independent fit

0.5

System of equations for the bin yields:

$$N_{i}^{\pm} = h_{\pm} \left[F_{i} + (x_{\pm}^{2} + y_{\pm}^{2}) F_{-i} + 2 \sqrt{F_{i} F_{-i}} (x_{\pm} c_{i} + y_{\pm} s_{i}) \right]$$

0.5

- Physics parameters: $x_{\pm} = r_B \cos(\delta_B \pm \gamma)$, $y_{\pm} = r_B \sin(\delta_B \pm \gamma)$,
- Strong phase parameters: c_i , s_i measured by CLEO and BES-III from quantum correlations in $e^+e^- \to D\overline{D}$ decays.
 - BES-III measurement [PRL 124, 241802 (2020)] used for the 1st time, ×4 stats of CLEO
- Flavour-specific bin yield fractions: F_i , shared between $B \to DK$ and $B \to D\pi$

Coherence in bin *i* is determined by $s_i^2 + c_i^2$

-0.5

[JHEP 02 (2021) 169]

Binned fit results and constraints on physics parameters:

- Most precise single measurement of γ .
- lacksquare Using full Run I + Run II sample by LHCb, $B^\pm o Dh^\pm$, $D o K^0_{
 m S}h^+h^ (h=K,\pi)$
- New strong phase measurement by BES-III used
- Statistically dominated, $\sigma(syst) \sim 1^{\circ}$, $\sigma(CLEO+BES) \sim 1^{\circ}$.

Anton Poluekto

 γ measurements

[JHEP 02 (2021) 169]

Binned fit results and constraints on physics parameters:

$$\begin{array}{l} x_-^{DK} = (5.6 \pm 1.0 \pm 0.2 \pm 0.3) \times 10^{-2}, \\ y_-^{DK} = (6.5 \pm 1.1 \pm 0.3 \pm 0.4) \times 10^{-2}, \\ x_+^{DK} = (-9.2 \pm 1.0 \pm 0.2 \pm 0.2) \times 10^{-2}, \\ y_+^{DK} = (-1.2 \pm 1.2 \pm 0.3 \pm 0.3) \times 10^{-2}, \\ x_\xi^{D\pi} = (-5.3 \pm 2.0 \pm 0.3 \pm 0.2) \times 10^{-2}, \\ y_\xi^{D\pi} = (1.0 \pm 2.3 \pm 0.5 \pm 0.3) \times 10^{-2}, \\ \text{exp. syst} & \text{CLEO, BES-III} \\ & \begin{array}{c} \gamma = (69 \pm 5)^{\circ}, \\ \gamma_B^{DK} = 0.089_{-0.008}^{+0.008}, \\ \delta_B^{DK} = (118 \pm 6)^{\circ}, \\ r_B^{D\pi} = 0.0048_{-0.0016}^{+0.0017}, \\ \delta_B^{D\pi} = (287_{-27}^{+26})^{\circ}. \end{array}$$

- Most precise single measurement of γ .
- Using full Run I + Run II sample by LHCb, $B^\pm o Dh^\pm$, $D o K^0_{
 m S}h^+h^ (h=K,\pi)$
- New strong phase measurement by BES-III used
- Statistically dominated, $\sigma(syst) \sim 1^{\circ}$, $\sigma(\mathsf{CLEO} + \mathsf{BES}) \sim 1^{\circ}$.

$B \to DK$, $D^0 \to K_s^0 \pi^+ \pi^-$: can we do better with the same stats?

[Ongoing project in LHCb+BESIII (Oxford, IHEP, CPPM)]

Binned approach reduces statistical precision compared to unbinned fit.

Carefully optimised binning has $\simeq 80\%$ power of the unbinned fit (coherence!)

Can we do better?

[AP, EPJC (2018) 78: 121]

Weight functions instead of bins:

$$\int\limits_{\mathcal{D}_i} \dots dz \quad \rightarrow \quad \int\limits_{\mathcal{D}} \dots \times w_i(z) \ dz$$

E.g. Fourier expansion of strong phase difference:

$$w_{2n}(z) = \cos(n\Delta\delta_D(z));$$

$$w_{2n+1}(z) = \sin(n\Delta\delta_D(z))$$

Somewhat better results (in toy MC) than binned approach, fewer free parameters Still does not reach the model-dependent precision.

Can we find a better set of basis functions?

[Ongoing project in LHCb+BESIII (Oxford, IHEP, CPPM)]

If the function $p(\mathbf{z})$ fully lies in the subspace spanned by the set of basis functions $w_{\alpha}(\mathbf{z})$, the information contained in the projections p_{α} will be maximal.

Density over $D o K^0_{\rm S} \pi^+ \pi^-$ Dalitz plot from B o DK decays:

$$p_B(\mathbf{z}) = h_B\{p_D(\mathbf{z}) + r_B^2 \bar{p}_D[\mathbf{z}) + 2(xC(\mathbf{z}) + yS(\mathbf{z})]\}$$

The density $p_B(\mathbf{z})$ is a **linear combination** of 4 functions:

$$p_D(\mathbf{z}), \ \bar{p}_D(\mathbf{z}), \ C(\mathbf{z}) = \sqrt{p_D \bar{p}_D \sin \delta}, \ S(\mathbf{z}) = \sqrt{p_D \bar{p}_D \cos \delta}$$

Density functions are **model-dependent**, but the measurement is **model-independent** (wrong model $\Rightarrow p_B$ not fully contained in the span of basis functions, less coherence but no bias)

 $w_0(z)$

p(z) fully contained in w_{α} span

 $p(\mathbf{z})$ not fully contained in w_{α} span

ments

GDR InF 2021, 15-17 November 2021

- Result of orthogonalisation of the set $p_D(z)$, $\bar{p}_D(z)$, C(z), S(z)
- Only 4 unknown strong phase parameters
- γ sensitivity expected to be equal to model-dependent fit
- Further improvement possible: > 4 functions for model-dependent-equivalent sensitivity for a family of models

$\Lambda_b^0 o DpK^-$ decays

 γ -sensitive modes in the case of Λ_b^0 :

 $\varLambda_b^0 \to D \varLambda_{\to p\pi^-}^0$ mode affected by low efficiency to reconstruct long-lived \varLambda^0 . Trying with excited, strongly decaying $\varLambda^{*0} \to pK^-$ instead

- Favoured $\Lambda_b^0 o DpK^-$ with $D o K^-\pi^+$ is observed in Run 1
- Now:

[PRD 89, 032001 (2014)]

- Search for suppressed mode $\Lambda_b^0 \to DpK^-$ with $D \to K^+\pi^-$ with enhanced $b \to c$ and $b \to u$ interference term
- Measure CP asymmetry

$A_h^0 o D ho K^-$ decays

Signal with full Run 1+Run 2 LHCb data sample

First observation of the suppressed mode!

- \blacksquare Yields: 1437 \pm 92 (favoured), 241 \pm 22 (suppressed)
- Favoured-to-suppressed \mathcal{B} ratio $R = 7.1 \pm 0.8 (\mathrm{stat})^{+0.4}_{-0.3} (\mathrm{syst})$

[arXiv:2109.02621]

 $\Lambda_b^0 \to \Lambda_c^{*+} K^ (b \to c)$ and $\Lambda_b^0 \to D_s^{*-} p$ $(b \to u)$ amplitudes are flavour-specific Taking only $\Lambda_b^0 \to D \Lambda^{*0}$ $(M^2(pK^-) < 5 \,\mathrm{GeV}^2/c^4)$ should enhance CPV term

[arXiv:2109.02621]

CPV in $\Lambda_b^0 \to DpK^-$

CP asymmetry in the $\Lambda^{*0} \to pK^-$ region $(M^2(pK^-) < 5 \, {\rm GeV}^2/c^4)$

$$R = 8.6 \pm 1.5 \,(\text{stat.})^{+0.4}_{-0.3} \,(\text{syst.}),$$

 $A = 0.01 \pm 0.16 \,(\text{stat.})^{+0.03}_{-0.02} \,(\text{syst.}).$

[arXiv:2109.02621]

CPV in $\Lambda_b^0 \to DpK^-$: what's next?

- ADS-like mode measured
- GLW-like mode (D_{CP}): analysis in progress [IJCLab]

Even provided that we measure nonzero CP asymmetry in $\varLambda_b^0\to DpK^-$, can we extract $\gamma?$

- lacksquare Λ_b^0 decays are more complex because of overlapping helicity states
 - Each Λ^{*0} helicity has, in general, its own strong phase
 - Sum up over polarisations of initial and final states
 - \Rightarrow effectively, low and unknown coherence factor κ .
- $lacksquare \Lambda_b^0 o D \Lambda^0$ case with weak $\Lambda^0 o p \pi^-$ decay:
 - \blacksquare Can measure \varLambda^0 polarisation and resolve γ
 - See e.g. [Giri, Mohanta, Khanna, PRD 65 (2002) 073029]
- $\Lambda_b^0 \to D \Lambda^{*0}$ is different because $\Lambda^{*0} \to p K^-$ is strong (*P*-conserving)
 - Unfortunately, Λ_b^0 are produced not polarised in pp. Can we make them polarised?
 - Could exploit correlations of two b baryons [Yu. Grossman, private communication]. Mostly should be in L=1. Polarisation tagger?

Summary

- Combination of all LHCb measurements: $\gamma = 65.4^{+3.8}_{-4.2}$.
- Many contributing modes ⇒ more robust measurement.
- Ideas to improve precision even with the current dataset
 - Improve coherence in Dalitz plot modes
 - Double Dalitz [talk by Yuya Shimizu]
 - Time-dependent measurements
 - Other *B* mesons and *b*-baryons?
- Aim at precision $\simeq 1.5^{\circ}$ after Run 3.

Backup

LHCb experiment

One-arm spectrometer optimised for studies of beauty and charm decays at LHC

Covers forward region (maximum of c and b production)

- Covers forward region (maximum of c and b production)
- Good vertexing: measure B^0 and B_s^0 oscillations, reject prompt background

- Covers forward region (maximum of c and b production)
- lacksquare Good vertexing: measure B^0 and B^0_s oscillations, reject prompt background
- Particle identification: flavour tagging, misID background

- Covers forward region (maximum of c and b production)
- lacksquare Good vertexing: measure B^0 and B^0_s oscillations, reject prompt background
- Particle identification: flavour tagging, misID background
- High-resolution tracking

- Covers forward region (maximum of c and b production)
- Good vertexing: measure B^0 and B_s^0 oscillations, reject prompt background
- Particle identification: flavour tagging, misID background
- High-resolution tracking
- Calorimetry: reconstruct neutrals (π^0, γ) in the final state

- Covers forward region (maximum of c and b production)
- lacksquare Good vertexing: measure B^0 and B^0_s oscillations, reject prompt background
- Particle identification: flavour tagging, misID background
- High-resolution tracking
- Calorimetry: reconstruct neutrals (π^0, γ) in the final state
- Efficient trigger, including fully hadronic modes

 $3~{\rm fb^{-1}}$ in 2011 and 2012 (Run I, $\sqrt{s}=7, 8~{\rm TeV}$) $6~{\rm fb^{-1}}$ in 2015-2018 (Run II, $\sqrt{s}=13~{\rm TeV}$, higher b CS): Analyses ongoing

 $3\,{\rm fb^{-1}}$ in 2011 and 2012 (Run I, $\sqrt{s}=7,8\,{\rm TeV}$) 6 fb⁻¹ in 2015-2018 (Run II, $\sqrt{s}=13\,{\rm TeV}$, higher *b* CS): Analyses ongoing

Proton-proton collision

LHCb trigger

Trigger is a crucial elements in experiments at hadron machines. Need to work in a very difficult environment with hundreds of tracks in each beam crossing.

 2011 and early 2012: increased trigger bandwidth (compared to design 2 kHz) to accommodate charm

LHCb trigger

Trigger is a crucial elements in experiments at hadron machines. Need to work in a very difficult environment with hundreds of tracks in each beam crossing.

- 2011 and early 2012: increased trigger bandwidth (compared to design 2 kHz) to accommodate charm
- 2012: *deferred trigger* configuration: keep the trigger farm busy between fills

LHCb trigger

Trigger is a crucial elements in experiments at hadron machines. Need to work in a very difficult environment with hundreds of tracks in each beam crossing.

- 2011 and early 2012: increased trigger bandwidth (compared to design 2 kHz) to accommodate charm
- 2012: deferred trigger configuration: keep the trigger farm busy between fills
- Since 2015: *split trigger*
 - All 1st stage (HLT1) output stored on disk
 - Used for real-time calibration and alignment
 - 2nd stage (HLT2) uses offline-quality calibration
 - 5 kHz of 12 kHz to Turbo stream:
 - Candidates produced by trigger are stored
 - No raw event ⇒ smaller event size
 - Used for high-yield channels (charm, J/ψ , ...)

Analysis techniques

Time-dependent measurements

Measure lifetime based on vertex displacement from the primary vertex of *pp* interaction.

Large boost provides excellent time resolution ($\sigma_t \simeq$ 45 fs)

Flavor tagging

Need to identify B flavour at production time (different from flavour at decay time due to oscillations).

Use decay products of the opposite-side B (OS) and π , K associated with same-side B (SS).

Effective tagging power $\epsilon_{\rm tag} D^2 = 3.7\%$.

LHCb upgrade I

γ from time-dependent analyses

Interference between $b \to u$ and $b \to c$ amplitude from B^0_s mixing. Comparable magnitudes $r = |\frac{p}{q} \frac{A_f}{A_{\overline{r}}}| \simeq 0.4$.

Time-dependent decay rates for $B^0_s(\overline{B}^0_s) o f$ (similarly for \overline{f}) we have

$$rac{d\Gamma_{B_s^0(ar{B}_s^0) o f}(t)}{dt} \propto e^{-\Gamma_s t} \left[\cosh\left(rac{\Delta\Gamma_s t}{2}
ight) + A_f^{\Delta\Gamma} \sinh\left(rac{\Delta\Gamma_s t}{2}
ight) \\ \pm C_f \cos(\Delta m_s t) \mp S_f \sin(\Delta m_s t)
ight]$$

Measure $\gamma-2\beta_s$, δ , r

Similar technique with $B^0 \to D\pi$ (but negligible $\Delta\Gamma_d$, small $r \simeq 0.02 \Rightarrow$ only two observables $S_f, S_{\overline{r}}$).

Measure $2\beta + \gamma$ with the external input for r (from SU(3) $B^0 \rightarrow D_s \pi$)

30/19

Relies on input $-2\beta_s = -0.030 \pm 0.033 \Rightarrow \gamma = (128^{+17}_{-22})^{\circ}$ (stat-limited).

Systematic uncertainties: background, Δm_s , time acceptance, resolution, flavour tagging. All data-driven.

[LHCb-PUB-2018-009: "Physics case for an LHCb Upgrade II"]

- $lue{}$ Critical uncertainty: measurement of strong phase difference in bins. Currently: $\simeq 1^{\circ}$ (CLEO, BES-III).
- Further reduction is possible:
 - Expect BES-III to contribute with larger dataset.
 - \blacksquare Technique to obtain $D^0-\bar{D}^0$ phase difference from charm mixing fits at LHCb [JHEP 10 (2012) 185]
 - Use other $B \to DX$ decays to overconstrain phase difference, such as $B \to DK\pi$, $D \to K_S^0 \pi \pi$ [PRD 97, 056002 (2018)]
 - f B
 ightarrow DK decays themselves constrain phase difference for sufficiently large dataset [preliminary toy MC studies]
- Other uncertainties depend on control or MC samples.

[LHCb-PUB-2018-009: "Physics case for an LHCb Upgrade II"]

Main systematic uncertainties with rate and asymmetry measurements:

- Production and instrumentation asymmetries
- Backgrounds and their asymmetries.

All data-driven, so assumed to scale with data sample.

Additional subtle point to be taken into account:

- Charm mixing and CP violation in charm
- Matter effects for K_S^0 final states

LHCb upgrade prospects for benchmark measurements

[LHCb-PUB-2018-009: "Physics case for an LHCb Upgrade II"]

Observable	Current LHCb	LHCb 2025	Belle II	Upgrade II	ATLAS & CMS
EW Penguins					
$R_K (1 < q^2 < 6 \text{ GeV}^2 c^4)$	0.1 [274]	0.025	0.036	0.007	_
R_{K^*} $(1 < q^2 < 6 \text{GeV}^2 c^4)$	$0.1 \ \ 275$	0.031	0.032	0.008	_
R_{ϕ} , R_{pK} , R_{π}		0.08,0.06,0.18	-	0.02,0.02,0.05	-
CKM tests					
γ , with $B_s^0 \rightarrow D_s^+ K^-$	$\binom{+17}{-22}^{\circ}$ 136	4°	-	1°	_
γ , all modes	(+5.0 -5.8)° 167	1.5°	1.5°	0.35°	_
$\sin 2\beta$, with $B^0 \rightarrow J/\psi K_s^0$	0.04 609	0.011	0.005	0.003	_
ϕ_s , with $B_s^0 \rightarrow J/\psi \phi$	49 mrad 44	14 mrad	-	4 mrad	22 mrad [610]
ϕ_s , with $B_s^0 \rightarrow D_s^+ D_s^-$	170 mrad 49	35 mrad	_	9 mrad	
$\phi_s^{s\bar{s}s}$, with $B_s^0 \to \phi \phi$	154 mrad 94	39 mrad	_	11 mrad	Under study 611
$a_{ m sl}^s$	33×10^{-4} 211	10×10^{-4}	-	3×10^{-4}	
$ V_{ub} / V_{cb} $	6% 201	3%	1%	1%	_
$B_s^0, B^0{ ightarrow}\mu^+\mu^-$					
$\overline{\mathcal{B}(B^0 \to \mu^+ \mu^-)}/\mathcal{B}(B_s^0 \to \mu^+ \mu^-)$	90% 264	34%	_	10%	21% 612
$\tau_{B^0_s \rightarrow \mu^+ \mu^-}$	22% 264	8%	_	2%	
$S_{\mu\mu}$		_	-	0.2	-
$b \to c \ell^- \bar{\nu_l}$ LUV studies					
$R(D^*)$	0.026 215 217	0.0072	0.005	0.002	_
$R(J/\psi)$	0.24 220	0.071	-	0.02	_
Charm					
$\overline{\Delta A_{CP}(KK - \pi \pi)}$	8.5×10^{-4} 613	1.7×10^{-4}	5.4×10^{-4}	3.0×10^{-5}	_
$A_{\Gamma} \approx x \sin \phi$	2.8×10^{-4} 240	4.3×10^{-5}	3.5×10^{-4}	1.0×10^{-5}	_
$x \sin \phi$ from $D^0 \rightarrow K^+\pi^-$	13×10^{-4} 228	3.2×10^{-4}	4.6×10^{-4}	8.0×10^{-5}	_
$x \sin \phi$ from multibody decays		$(K3\pi) 4.0 \times 10^{-5}$	$(K_{\rm S}^0\pi\pi)~1.2\times 10^{-4}$	$(K3\pi) 8.0 \times 10^{-6}$	_