Measurement of the CKM Angle γ with $B^{0} \rightarrow D K^{+} \pi^{-}, D \rightarrow K_{\mathrm{S}}^{0} h^{+} h^{-}$ (Double Dalitz) at LHCb

Yuya Shimizu

Université Paris-Saclay, France

GDR-InF annual meeting 17.11.2021

Outline

- Measurement of γ
- Use of 3-body decay of D, BPGGSZ method
- γ with B^{0} Dalitz and D Dalitz, Double Dalitz method
- Ongoing work at the LHCb

Measurement of γ

Interference between $b \rightarrow u$ and $b \rightarrow c$

- A typical channel to measure γ is $B^{ \pm} \rightarrow D K^{ \pm}$
- The decay can go via either D^{0} or \bar{D}^{0}
- Interference when the final state f is accessible from both D^{0} and \bar{D}^{0}
- One such example is $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$

Self-conjugated 3-body decay of D (BPGGSZ method)

- 3-body decay of D can be used [1] [2]
- For example, $B^{ \pm} \rightarrow D K^{ \pm}, D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$
- The sensitivity to γ is enhanced thanks to the resonances in $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$
- Cabibbo suppressed $D \rightarrow K_{\mathrm{S}}^{0} \rho$
- Doubly Cabibbo suppressed $D \rightarrow K^{*+} \pi^{-}$

Self-conjugated 3-body decay of D (BPGGSZ method)

- The amplitude of $B^{ \pm} \rightarrow D K^{ \pm}, D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$can be written as

$$
A \propto \bar{A}_{D}+r_{B} e^{i\left(\delta_{B}+\gamma\right)} A_{D}
$$

$-r_{B}$: ratio of the suppressed to the favoured decays

- δ_{B} : strong phase difference between the suppressed and favoured decays
- δ_{D} : strong phase difference between $D^{0}\left(\bar{D}^{0}\right) \rightarrow f$

Partial width as a function of the position on the Dalitz plane

$$
d \Gamma_{B^{ \pm} \rightarrow D K^{ \pm}}(x)=\bar{A}_{D}^{2}+r_{B} A_{D}^{2}+2 \bar{A}_{D} A_{D}\left[r_{B} \cos \left(\delta_{B} \pm \gamma\right) \cos \delta_{D}+r_{B} \sin \left(\delta_{B} \pm \gamma\right) \sin \delta_{D}\right]
$$

Binned D Dalitz

- Binned D Dalitz method is model-independent
- Binning scheme is chosen to maximise sensitivity to γ [3]
- Run $1+2$ analysis has measured $\gamma=\left(68.7_{-5.1}^{+5.2}\right)^{\circ}$, which is the most precise measurement of γ from a single analysis [4]

Number of events in bin i

$$
\begin{aligned}
& N_{ \pm i}^{+}=h_{B^{+}}\left[K_{\mp i}+\left(x_{+}^{2}+y_{+}^{2}\right) K_{ \pm i}+2 \sqrt{K_{i} K_{-i}}\left(x_{+} c_{ \pm i}-y_{+} s_{ \pm i}\right)\right] \\
& N_{ \pm i}^{-}=h_{B^{-}}\left[K_{ \pm i}+\left(x_{-}^{2}+y_{-}^{2}\right) K_{\mp i}+2 \sqrt{K_{i} K_{-i}}\left(x_{-} c_{ \pm i}-y_{-} s_{ \pm i}\right)\right]
\end{aligned}
$$

- $x_{ \pm}=r_{B} \cos \left(\delta_{B} \pm \gamma\right)$
- $y_{ \pm}=r_{B} \sin \left(\delta_{B} \pm \gamma\right)$
- $h_{B^{ \pm}}$: normalisation factor,
$-c_{ \pm i}, s_{ \pm i}$: sine and cosine of the strong
- $K_{+(-) i}$: fraction of $D^{0}\left(\bar{D}^{0}\right) \rightarrow f$ in bin i, estimated using $B^{ \pm} \rightarrow D \pi^{ \pm}$control mode phase difference between $D^{0}\left(\bar{D}^{0}\right) \rightarrow f$, taken from CLEO and BESIII \equiv

Measurement of γ with $B^{0} \rightarrow D K^{* 0}$

- The branching fraction is small $\left(\sim 5 \times 10^{-5}\right)$
- However, $r_{B} \sim 0.3$ which provides larger interference than $B^{ \pm} \rightarrow D K^{ \pm}(\sim 0.1)$
- Model-independent BPGGSZ analysis has been done for Run 1 [5]
- Run $1+2$ analysis is ongoing
- We can include the entire phase space of $B^{0} \rightarrow D K^{+} \pi^{-}$
- Having different resonances can give additional sensitivity to γ
- $B^{0} \rightarrow D K_{0}^{*}(1430)^{0}$
- $B^{0} \rightarrow D K_{2}^{*}(1430)^{0}$
- $B^{0} \rightarrow D_{2}^{*}(2460)^{-} K^{+}$
- No need to take into account the coherence factor as in $B^{0} \rightarrow D K^{* 0}$
- Simultaneously use B Dalitz and D Dalitz \rightarrow Double Dalitz [6] [7]

Double Dalitz method

- The amplitude of $B^{0} \rightarrow D K^{+} \pi^{-}, D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$can be written as

$$
A \propto \bar{A}_{B} \bar{A}_{D}+e^{i \gamma} A_{B} A_{D}
$$

- $A_{B}\left(\bar{A}_{B}\right)$: amplitude of $B^{0} \rightarrow D^{0}\left(\bar{D}^{0}\right) K^{+} \pi^{-}$
- $A_{D}\left(\bar{A}_{D}\right)$: amplitude of $D^{0}\left(\bar{D}^{0}\right) \rightarrow f$

Partial width as a function of the position on the Double Dalitz plane

$$
\begin{aligned}
d \Gamma_{B^{0} \rightarrow D K^{+} \pi^{-}}(x)= & \bar{A}_{B}^{2} \bar{A}_{D}^{2}+A_{B}^{2} A_{D}^{2}+2 \bar{A}_{B} \bar{A}_{D} A_{B} A_{D} \\
& {\left[\left(\cos \delta_{B} \cos \delta_{D}-\sin \delta_{B} \sin \delta_{D}\right) \cos \gamma-\left(\cos \delta_{B} \sin \delta_{D}-\sin \delta_{B} \cos \delta_{D}\right) \sin \gamma\right] }
\end{aligned}
$$

Double Dalitz observables

Number of events in each bin for $B^{0} \rightarrow D K^{+} \pi^{-}$(for $\bar{B}^{0} \gamma \rightarrow-\gamma$)

$$
N_{\alpha i}=h\left\{\bar{\kappa}_{\alpha} K_{+i}+\kappa_{\alpha} K_{-i}+2 \sqrt{\kappa_{\alpha} K_{+i} \bar{\kappa}_{\alpha} K_{-i}}\left[\left(\chi_{\alpha} c_{i}-\sigma_{\alpha} s_{i}\right) \cos \gamma-\left(\chi_{\alpha} s_{i}+\sigma_{\alpha} c_{i}\right) \sin \gamma\right]\right\}
$$

- α for B Dalitz bin, i for D Dalitz bin
- $\kappa_{\alpha}\left(\bar{\kappa}_{\alpha}\right)$ fraction of $B^{0} \rightarrow D^{0}\left(\bar{D}^{0}\right) K^{+} \pi^{-}$in each bin α
- $\chi_{\alpha}, \sigma_{\alpha}$ cosine and sine of strong phase difference between $B^{0} \rightarrow D^{0}\left(\bar{D}^{0}\right) K^{+} \pi^{-}$in each bin α
- $K_{+(-) i}$ fraction of $D^{0}\left(\bar{D}^{0}\right) \rightarrow f$ in bin i
- c_{i}, s_{i} cosine and sine of strong phase difference between $D^{0}\left(\bar{D}^{0}\right) \rightarrow f$
- h overall normalisation factor
- $\kappa_{\alpha}, \bar{\kappa}_{\alpha}, \chi_{\alpha}, \sigma_{\alpha}$ are shared across all decay modes and float in the fit
- additional decay modes improve precision to these parameters

Binned Double Dalitz

- The binning scheme is based on B^{0} and D Dalitz planes from [7], [3]
- A single three-body $B(D)$ decay results in $2 \times 5(2 \times 8)$ bins.
- A Double Dalitz decay results in $2 \times 5 \times 16=160$ bins
- For 160 observables we have 23 free parameters
- $B^{0} \rightarrow\left(D \rightarrow K_{S}^{0} K^{+} K^{-}\right) K^{+} \pi^{-}$can also be used with a suitable D Dalitz binning

B Dalitz Plane [7]

D Dalitz Plane [3]

Additional Decays

- We could add other decays in addition to 3-body D final states
- $D \rightarrow K^{+} \pi^{-}$
- the favoured control mode with low sensitivity to γ
- but a high statistics provides sensitivity to the B phase space parameters
- it adds 10 observables:

$$
N_{\alpha}=h\left\{\bar{\kappa}_{\alpha}+r_{D}^{2} \kappa_{\alpha}+2 \sqrt{\kappa_{\alpha} \bar{\kappa}_{\alpha}}\left[\left(\chi_{\alpha} \cos \left(\gamma-\delta_{D}\right)-\sigma_{\alpha} \sin \left(\gamma-\delta_{D}\right)\right]\right\}\right.
$$

- $D \rightarrow K^{-} \pi^{+}$
- less sensitive compared to $B^{+} \rightarrow D K^{+}$because r_{B} is larger
- also have to manage the $B_{s}^{0} \rightarrow D^{(*)} K^{-} \pi^{+}$background
- $D \rightarrow K^{+} K^{-}, \pi^{+} \pi^{-}$
- $D \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}, K^{+} \pi^{-} \pi^{+} \pi^{-}, K^{-} \pi^{+} \pi^{+} \pi^{-}$
- for $K 3 \pi$ modes binning can be used [9]
- In principle, we could add more (e.g. $D \rightarrow h^{+} h^{-} \pi^{0}$)

Extraction of γ

- First we need to remove background
- Trigger and stripping requirement
- Boosted Decision Tree to remove combinatorial background
- Particle identification requirement particularly against $B^{0} \rightarrow D \pi^{+} \pi^{-}$
- and so on
- We fit the B^{0} invariant mass globally rather than fit for each of 160 bins
- To get $N_{\alpha, i}$, we need to subtract the number of background
- For partially reconstructed background or mis-ID background we can use Laura++ and ongoing $B^{0} \rightarrow D^{*} K^{+} \pi^{-}, B_{s}^{0} \rightarrow D^{*} K^{-} \pi^{+}$analysis to get the distribution in Dalitz space

Boosted Decision Tree

- Signal: truth-matched MC 11, 12, 15, 16, 17, 18 (proportional to the luminosity)
- Background: Run 1 and Run 2 data, $m_{B^{0}}>5.5 \mathrm{GeV}$
- The samples are treated separately for Run 1 and Run 2
- We split the D decay modes into categories of topology rather than training a BDT for each mode
- BDTs for each of the following categories and for each Run:

1 KsHH LL with $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-} \mathrm{LL}$
■ KsHH DD with $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$DD
3 HH with $D \rightarrow K^{+} K^{-}$
4 HHHH with $D \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$

- Last two are for additional decay modes
- We checked using different BDTs for each D final state does not improve performance

Boosted Decision Tree

- BDT with XGBoost to suppress combinatorials.
- The k -fold cross BDT method with $k=4$ is exploited.
- It allows us to use events in the fitting region for training a BDT.
- We apply PID cuts on the companion particles before the training.

Training/Testing Samples

Training/Testing sample comparison

- Good agreement between the training and testing samples
- No significant overtraining
- Good separation between signal and background

$D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$DD Run 2

Optimising the BDT cut

- We optimise the BDT cut by maximising the figure of merit $S / \sqrt{S+B}$, where S and B are the sum of signal and background around B^{0} mass for both Runs
- The initial values of S and B are extracted from a simplified B^{0} mass fit
- The FOM is then evaluated at each working point from the efficiency
- We set the cut at 0.85 for both Runs

Summary

- Double Dalitz method with $B^{0} \rightarrow D K^{+} \pi^{-}, D \rightarrow K_{\mathrm{S}}^{0} h^{+} h^{-}$is a promising way to measure γ
- Including decays as $D \rightarrow h^{+} h^{-}$or $D \rightarrow h^{+} h^{-} h^{+} h^{-}$further improves sensitivity to γ
- The analysis at the LHCb is still at an early stage
- We aim to achieve $\sigma(\gamma) \sim 5^{\circ}$ with Run $1+2$ data

References I

[1] A. Soffer A. Giri, Y. Grossman and J. Zupan.
Determining γ using $B^{ \pm} \rightarrow D K^{ \pm}$with multibody D decays.
Phys. Rev. D, 68:054018, 2003.
[2] A. Bonder.
Proceedings of BINP special analysis meeting on Dalitz analysis.
24-26 Sep. 2002, unpublished.
[3] J. Libby et al.
Model-independent determination of the strong-phase difference between D^{0} and $\bar{D}^{0} \rightarrow K_{S, L}^{0} h^{+} h^{-}(h=\pi, K)$ and its impact on the measurement of the CKM angle γ / ϕ_{3}.
Phys. Rev. D, 82:112006, 2010.
[4] R. Aaij et al.
Measurement of the CKM angle γ in $B^{ \pm} \rightarrow D K^{ \pm}$and $B^{ \pm} \rightarrow D \pi \pm$ decays with $D \rightarrow K_{\mathrm{S}}^{0} h^{+} h^{-}$. JHEP, 02:169, arXiv:2010.08483, 2021.
[5] R. Aaij et al.
Model-independent measurement of the CKM angle γ using $B^{0} \rightarrow D K^{* 0}$ decays with $D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi_{\pi}^{-}$and $K_{\mathrm{S}}^{0} K^{+} K^{-}$. JHEP, 10:131, arXiv:1604.01525, 2016.
[6] T. Gershon and A. Poluektov.
Double Dalitz Plot Analysis of the Decay $B^{0} \rightarrow D K^{+}{ }_{\pi}{ }^{-}, D \rightarrow K_{S}^{0} \pi^{+} \pi^{-}$. Phys. Rev. D, 81:014025, 2010.
[7] D. Craik, T. Gershon, and A. Poluektov.
Optimising sensitivity to γ with $B^{0} \rightarrow D K^{+} \pi^{-}, D \rightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$double Dalitz plot analysis.
Phys. Rev. D, 97(5):056002, 2018.
[8] R. Aaij et al.
Constraints on the unitarity triangle angle γ from Dalitz plot analysis of $B^{0} \rightarrow D K^{+} \pi^{-}$decays.
Phys. Rev. D, 93(11):112018, 2016.
[Erratum: Phys.Rev.D 94, 079902 (2016)].

References II

[9] T. Evans, J. Libby, S. Malde, and G. Wilkinson.
Improved sensitivity to the CKM phase γ through binning phase space in $B^{-} \rightarrow D K^{-}, D \rightarrow K^{+} \pi^{-}{ }_{\pi}{ }^{-}{ }_{\pi}{ }^{+}$decays. Phys. Lett. B, 802:135188, 2020.
[10] R. Aaij et al.
Measurement of the CKM angle γ in $B^{ \pm} \rightarrow D K^{ \pm}$and $B^{ \pm} \rightarrow D \pi^{ \pm}$decays with $D \rightarrow K_{\mathrm{S}} h^{+} h^{-}$. 2020.
submitted to JHEP.
[11] M. Ablikim et al.
Model-independent determination of the relative strong-phase difference between D^{0} and $\bar{D}^{0} \rightarrow K_{S, L}^{0} \pi^{+} \pi^{-}$and its impact on the measurement of the CKM angle γ / ϕ_{3}. Phys. Rev. D, 101(11):112002, 2020.
[12] M. Ablikim et al.
Improved model-independent determination of the strong-phase difference between D^{0} and $\bar{D}^{0} \rightarrow K_{\mathrm{S}, \mathrm{L}}^{0} K^{+} K^{-}$decays. Phys. Rev. D, 102(5):052008, 2020.

Back Up

BACK UP

Decay Summary

Expected number of events in each bin (α for B bin, i for D bin) for $B^{0} \rightarrow D K^{+} \pi^{-}$(to get \bar{B}^{0} then $\gamma \rightarrow-\gamma$)
$N_{\alpha i}=h\left\{\bar{\kappa}_{\alpha} K_{+i}+\kappa_{\alpha} K_{-i}+2 \kappa_{D} \sqrt{\kappa_{\alpha} K_{+i} \bar{\kappa}_{\alpha} K_{-i}}\left[\left(\chi_{\alpha} c_{i}-\sigma_{\alpha} s_{i}\right) \cos \gamma-\left(\chi_{\alpha} s_{i}+\sigma_{\alpha} c_{i} \sin \gamma\right]\right\}\right.$

Decay	Parameters	Observables
$D \rightarrow K_{s}^{0} \pi^{+} \pi^{-}$	$K_{ \pm i}$ from $B^{+} \rightarrow D h^{+} \mathrm{BPGGSZ[10]}$	160
$D \rightarrow K_{s}^{0} K^{+} K^{-}$	c_{i}, s_{i} from CLEO+BES-III[11], $\kappa_{D}=1$	40
	$K_{ \pm i}$ from $B^{+} \rightarrow D h^{+} \mathrm{BPGGSZ[10]}$	
c_{i}, s_{i} from CLEO+BES-III[12], $\kappa_{D}=1$	40	
$D \rightarrow K^{+} \pi^{-}$	$K_{+i}=1, K_{-i}=r_{D}^{2}, c_{i}, s_{i}=\cos , \sin \left(-\delta_{D}\right), \kappa_{D}=1$	10
$D \rightarrow K^{-} \pi^{+}$	$K_{+i}=r_{D^{2}, K_{-i}=1, c_{i}, s_{i}=\cos , \sin \left(\delta_{D}\right), \kappa_{D}=1}^{10}$	
$D \rightarrow h^{+} h^{-}$	$K_{+i}=1, K_{-i}=1, c_{i}=1, s_{i}=0, \kappa_{D}=1$	10
$D \rightarrow K^{+} \pi^{-} \pi^{0}$	$K_{+i}=1, K_{-i}=r_{D}^{2}, c_{i}, s_{i}=\cos , \sin \left(-\delta_{D}\right), \kappa_{D}$	10
$D \rightarrow K^{-} \pi^{+} \pi^{0}$	$K_{+i}=r_{D}^{2}, \kappa_{D}, K_{-i}=1, c_{i}, s_{i}=\cos , \sin \left(\delta_{D}\right), \kappa_{D}$	10
$D \rightarrow h^{+} h^{-} \pi^{0}$	$K_{+i}=1, K_{-i}=1, c_{i}=1, s_{i}=0, \kappa_{D}=\left(2 F^{+}-1\right)$	10
$D \rightarrow K^{-} \pi^{+} \pi^{+} \pi^{-}$	$K_{ \pm i}$ from $B^{+} \rightarrow D h^{+} \mathrm{BPGGSZ}$	80
$D \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$	c_{i}, s_{i} from CLEO+BES-III, $\kappa_{D}=1$	$K_{+i}=1, K_{-i}=1, c_{i}=1, s_{i}=0, \kappa_{D}=\left(2 F^{+}-1\right)$

