Measurement of the CKM Angle γ with $B^0 \to DK^+\pi^-$, $D \to K^0_{\rm S}h^+h^-$ (Double Dalitz) at LHCb

Yuya Shimizu

Université Paris-Saclay, France

GDR-InF annual meeting 17.11.2021

Outline

- lacktriangle Measurement of γ
- ▶ Use of 3-body decay of *D*, BPGGSZ method
- $\blacktriangleright \ \gamma$ with B^0 Dalitz and D Dalitz, Double Dalitz method
- Ongoing work at the LHCb

Measurement of γ

Interference between b o u and b o c

- ▶ A typical channel to measure γ is $B^\pm \to DK^\pm$
- ▶ The decay can go via either D^0 or \overline{D}^0
- Interference when the final state f is accessible from both D^0 and \overline{D}^0
- ▶ One such example is $D \to K_{\rm S}^0 \pi^+ \pi^-$

Self-conjugated 3-body decay of D (BPGGSZ method)

- ▶ 3-body decay of *D* can be used [1] [2]
- ▶ For example, $B^\pm \to DK^\pm$, $D \to K_{\rm S}^0 \pi^+ \pi^-$
- ▶ The sensitivity to γ is enhanced thanks to the resonances in $D \to K^0_S \pi^+ \pi^-$
 - Cabibbo suppressed $D o K_{
 m S}^0
 ho$
 - ullet Doubly Cabibbo suppressed $D o K^{*+}\pi^-$

Self-conjugated 3-body decay of D (BPGGSZ method)

► The amplitude of $B^{\pm} \to DK^{\pm}$, $D \to K_{\rm S}^0 \pi^+ \pi^-$ can be written as

$$A \propto \overline{A}_D + r_B e^{i(\delta_B + \gamma)} A_D$$

- $ightharpoonup r_B$: ratio of the suppressed to the favoured decays
- lacktriangledown δ_B : strong phase difference between the suppressed and favoured decays
- δ_D : strong phase difference between D^0 $(\overline{D}^0) o f$

Partial width as a function of the position on the Dalitz plane

$$d\Gamma_{B^{\pm}\to DK^{\pm}}(x) = \overline{A}_D^2 + r_B A_D^2 + 2\overline{A}_D A_D [r_B \cos(\delta_B \pm \gamma) \cos \delta_D + r_B \sin(\delta_B \pm \gamma) \sin \delta_D]$$

Binned D Dalitz

- Binned D Dalitz method is model-independent
- ▶ Binning scheme is chosen to maximise sensitivity to γ [3]
- \blacktriangleright Run 1+2 analysis has measured $\gamma=(68.7^{+5.2}_{-5.1})^{\circ}\text{, which is the most precise}$ measurement of γ from a single analysis [4]

Number of events in bin i

$$\begin{split} N_{\pm i}^+ &= h_{B^+}[K_{\mp i} + (x_+^2 + y_+^2)K_{\pm i} + 2\sqrt{K_iK_{-i}}(x_+c_{\pm i} - y_+s_{\pm i})] \\ N_{\pm i}^- &= h_{B^-}[K_{\pm i} + (x_-^2 + y_-^2)K_{\mp i} + 2\sqrt{K_iK_{-i}}(x_-c_{\pm i} - y_-s_{\pm i})] \end{split}$$

- $rac{1}{2} x \pm r_B \cos(\delta_B \pm \gamma)$
- $ightharpoonup h_{R\pm}$: normalisation factor,
- ► $K_{+(-)i}$: fraction of D^0 (\overline{D}^0) $\to f$ in bin i, estimated using $B^{\pm} \to D\pi^{\pm}$ control mode
- $y_{\pm} = r_B \sin(\delta_B \pm \gamma)$
- $c_{\pm i}, s_{\pm i}$: sine and cosine of the strong phase difference between D^0 $(\overline{D}^0) \to f$, taken from CLEO and BESIII

Measurement of γ with $B^0 \to DK^{*0}$

- ▶ The branching fraction is small ($\sim 5 \times 10^{-5}$)
- lacktriangle However, $r_B\sim 0.3$ which provides larger interference than $B^\pm o DK^\pm$ (~ 0.1)
- ▶ Model-independent BPGGSZ analysis has been done for Run 1 [5]
- ► Run 1+2 analysis is ongoing

Measuring γ with $B^0 o DK^+\pi^{-1}$

- ▶ We can include the entire phase space of $B^0 o DK^+\pi^-$
- lacktriangle Having different resonances can give additional sensitivity to γ
 - $B^0 \to DK_0^*(1430)^0$
 - $B^0 \to DK_2^*(1430)^0$
 - $B^0 \to D_2^*(2460)^- K^+$
- ▶ No need to take into account the coherence factor as in $B^0 o DK^{*0}$
- ▶ Simultaneously use B Dalitz and D Dalitz \rightarrow Double Dalitz [6] [7]

B Dalitz plot [8]

Double Dalitz method

▶ The amplitude of $B^0 o DK^+\pi^-$, $D o K^0_S\pi^+\pi^-$ can be written as

$$A \propto \overline{A}_B \overline{A}_D + e^{i\gamma} A_B A_D$$

- ▶ $A_B(\overline{A}_B)$: amplitude of $B^0 \to D^0(\overline{D}^0)K^+\pi^-$
- $lacksquare A_D(\overline{A}_D)$: amplitude of $D^0(\overline{D}^0) o f$

Partial width as a function of the position on the Double Dalitz plane

$$\begin{split} d\Gamma_{B^0 \to DK^+\pi^-}(x) = & \overline{A}_B^2 \overline{A}_D^2 + A_B^2 A_D^2 + 2 \overline{A}_B \overline{A}_D A_B A_D \\ & \left[(\cos \delta_B \cos \delta_D - \sin \delta_B \sin \delta_D) \cos \gamma - (\cos \delta_B \sin \delta_D - \sin \delta_B \cos \delta_D) \sin \gamma \right] \end{split}$$

Double Dalitz observables

Number of events in each bin for $B^0 \to DK^+\pi^-$ (for $\overline{B}^0 \gamma \to -\gamma$)

$$N_{\alpha i} = h \left\{ \overline{\kappa}_{\alpha} K_{+i} + \kappa_{\alpha} K_{-i} + 2 \sqrt{\kappa_{\alpha} K_{+i} \overline{\kappa}_{\alpha} K_{-i}} \left[(\chi_{\alpha} c_i - \sigma_{\alpha} s_i) \cos \gamma - (\chi_{\alpha} s_i + \sigma_{\alpha} c_i) \sin \gamma \right] \right\}$$

- $ightharpoonup \alpha$ for B Dalitz bin, i for D Dalitz bin
- ightharpoonup κ_{α} ($\overline{\kappa}_{\alpha}$) fraction of $B^0 \to D^0(\overline{D}^0)K^+\pi^-$ in each bin α
- χ_{α} , σ_{α} cosine and sine of strong phase difference between $B^0 \to D^0(\overline{D}^0)K^+\pi^-$ in each bin σ
- $ightharpoonup K_{+(-)i}$ fraction of D^0 $(\overline{D}^0) \to f$ in bin i
- $ightharpoonup c_i,\ s_i$ cosine and sine of strong phase difference between D^0 $(\overline{D}^0) o f$
- h overall normalisation factor
- $ightharpoonup \kappa_{\alpha}, \bar{\kappa}_{\alpha}, \chi_{\alpha}, \sigma_{\alpha}$ are shared across all decay modes and float in the fit
 - additional decay modes improve precision to these parameters

Binned Double Dalitz

- lacktriangle The binning scheme is based on B^0 and D Dalitz planes from [7], [3]
- ▶ A single three–body B(D) decay results in 2×5 (2 × 8) bins.
- ▶ A Double Dalitz decay results in $2 \times 5 \times 16 = 160$ bins
- ▶ For 160 observables we have 23 free parameters
- ▶ $B^0 \to (D \to K^0_S K^+ K^-) K^+ \pi^-$ can also be used with a suitable D Dalitz binning

Additional Decays

- We could add other decays in addition to 3-body D final states
- $D \rightarrow K^+\pi^$
 - ullet the favoured control mode with low sensitivity to γ
 - ullet but a high statistics provides sensitivity to the B phase space parameters
 - it adds 10 observables:

$$N_{\alpha} = h \left\{ \bar{\kappa}_{\alpha} + r_{D}^{2} \kappa_{\alpha} + 2 \sqrt{\kappa_{\alpha} \bar{\kappa}_{\alpha}} \left[\left(\chi_{\alpha} \cos(\gamma - \delta_{D}) - \sigma_{\alpha} \sin(\gamma - \delta_{D}) \right] \right\} \right\}$$

- $D \rightarrow K^-\pi^+$
 - less sensitive compared to $B^+ \to DK^+$ because r_B is larger
 - \bullet also have to manage the $B^0_s \to D^{(*)} K^- \pi^+$ background
- $D \to K^+K^-, \pi^+\pi^-$
- $D \to \pi^+\pi^-\pi^+\pi^-, K^+\pi^-\pi^+\pi^-, K^-\pi^+\pi^+\pi^-$
 - for $K3\pi$ modes binning can be used [9]
- ▶ In principle, we could add more (e.g. $D \to h^+ h^- \pi^0$)

Extraction of γ

- First we need to remove background
 - · Trigger and stripping requirement
 - Boosted Decision Tree to remove combinatorial background
 - ullet Particle identification requirement particularly against $B^0 o D\pi^+\pi^-$
 - and so on
- lacktriangle We fit the B^0 invariant mass globally rather than fit for each of 160 bins
- ▶ To get $N_{\alpha,i}$, we need to subtract the number of background
- For partially reconstructed background or mis-ID background we can use Laura++ and ongoing $B^0 \to D^*K^+\pi^-$, $B^0_s \to D^*K^-\pi^+$ analysis to get the distribution in Dalitz space

Boosted Decision Tree

- Signal: truth-matched MC 11, 12, 15, 16, 17, 18 (proportional to the luminosity)
- \blacktriangleright Background: Run 1 and Run 2 data, $m_{B^0} > 5.5 \; {\rm GeV}$
- ▶ The samples are treated separately for Run 1 and Run 2
- We split the D decay modes into categories of topology rather than training a BDT for each mode
- ▶ BDTs for each of the following categories and for each Run:
 - I KsHH LL with $D \to K_S^0 \pi^+ \pi^-$ LL
 - 2 KsHH DD with $D \to K_S^0 \pi^+ \pi^-$ DD
 - 3 HH with $D \to K^+K^-$
 - 4 HHHH with $D \rightarrow \pi^+\pi^-\pi^+\pi^-$
 - Last two are for additional decay modes
- We checked using different BDTs for each D final state does not improve performance

Boosted Decision Tree

- ▶ BDT with XGBoost to suppress combinatorials.
- ▶ The k-fold cross BDT method with k=4 is exploited.
- It allows us to use events in the fitting region for training a BDT.
- We apply PID cuts on the companion particles before the training.

Training/Testing sample comparison

- Good agreement between the training and testing samples
- ► No significant overtraining
- Good separation between signal and background

$$D
ightarrow K_{
m S}^0 \pi^+ \pi^-$$
 DD Run1

$$D
ightarrow K_{\mathrm{S}}^{0} \pi^{+} \pi^{-}$$
 DD Run 2

Optimising the BDT cut

- ▶ We optimise the BDT cut by maximising the figure of merit $S/\sqrt{S+B}$, where S and B are the sum of signal and background around B^0 mass for both Runs
- lacktriangle The initial values of S and B are extracted from a simplified B^0 mass fit
- ▶ The FOM is then evaluated at each working point from the efficiency
- ▶ We set the cut at 0.85 for both Runs

Summary

- ▶ Double Dalitz method with $B^0 \to DK^+\pi^-$, $D \to K^0_S h^+h^-$ is a promising way to measure γ
- ▶ Including decays as $D \to h^+h^-$ or $D \to h^+h^-h^+h^-$ further improves sensitivity to γ
- ▶ The analysis at the LHCb is still at an early stage

▶ We aim to achieve $\sigma(\gamma) \sim 5^\circ$ with Run 1+2 data

References I

[1] A. Soffer A. Giri, Y. Grossman and J. Zupan.

Determining γ using $B^{\pm} \to DK^{\pm}$ with multibody D decays. *Phys. Rev. D.* 68:054018, 2003.

[2] A. Bonder.

Proceedings of BINP special analysis meeting on Dalitz analysis. 24–26 Sep. 2002, unpublished.

[3] J. Libby et al.

Model-independent determination of the strong-phase difference between D^0 and $\bar{D}^0 \to K^0_{S,L} h^+ h^-$ ($h=\pi,K$) and its impact on the measurement of the CKM angle γ/ϕ_3 . Phys. Rev. D, 82:112006, 2010.

[4] R. Aaij et al.

Measurement of the CKM angle γ in $B^\pm \to DK^\pm$ and $B^\pm \to D\pi^\pm$ decays with $D \to K_S^0 h^+ h^-$.

JHEP, 02:169, arXiv:2010.08483, 2021.

[5] R. Aaij et al.

Model-independent measurement of the CKM angle γ using $B^0 \to DK^{*0}$ decays with $D \to K_{\rm S}^0 \pi^+ \pi^-$ and $K_{\rm S}^0 K^+ K^-$. JHEP, 10:131. arXiv:1604.01525, 2016.

[6] T. Gershon and A. Poluektov.

Double Dalitz Plot Analysis of the Decay $B^0 \to DK^+\pi^-$, $D \to K^0_S\pi^+\pi^-$. Phys. Rev. D. 81:014025, 2010.

[7] D. Craik, T. Gershon, and A. Poluektov.

Optimising sensitivity to γ with $B^0 \to DK^+\pi^-$, $D \to K^0_S\pi^+\pi^-$ double Dalitz plot analysis. Phys. Rev. D. 97(5):056002, 2018.

[8] R. Aaij et al.

Constraints on the unitarity triangle angle γ from Dalitz plot analysis of $B^0 \to DK^+\pi^-$ decays. *Phys. Rev. D*, 93(11):112018, 2016.

[Erratum: Phys.Rev.D 94, 079902 (2016)].

References II

- [9] T. Evans, J. Libby, S. Malde, and G. Wilkinson. Improved sensitivity to the CKM phase γ through binning phase space in B[−] → DK[−], D → K⁺π[−]π[−]π⁺ decays. Phys. Lett. B. 80213188. 2020.
- [10] R. Aaij et al. Measurement of the CKM angle γ in $B^\pm\to DK^\pm$ and $B^\pm\to D\pi^\pm$ decays with $D\to K_{\rm S}h^+h^-$. 2020. Submitted to IHFP.
- [11] M. Ablikim et al. Model-independent determination of the relative strong-phase difference between D^0 and $\bar{D}^0 \to K_{S,L}^0 \pi^+ \pi^-$ and its impact on the measurement of the CKM angle γ/ϕ_3 . Phys. Rev. D, 101(11):112002, 2020.
- [12] M. Ablikim et al.

 Improved model-independent determination of the strong-phase difference between D^0 and $\bar{D}^0 \to K^0_{S,L} K^+ K^-$ decays.

 Phys. Rev. D, 102(5):052008, 2020.

BACK UP

Decay Summary

Expected number of events in each bin (α for B bin, i for D bin) for $B^0 \to DK^+\pi^-$ (to get \overline{B}^0 then $\gamma \to -\gamma$)

$$N_{\alpha i} = h \left\{ \bar{\kappa}_{\alpha} K_{+i} + \kappa_{\alpha} K_{-i} + 2\kappa_{D} \sqrt{\kappa_{\alpha} K_{+i} \bar{\kappa}_{\alpha} K_{-i}} \left[(\chi_{\alpha} c_{i} - \sigma_{\alpha} s_{i}) \cos \gamma - (\chi_{\alpha} s_{i} + \sigma_{\alpha} c_{i} \sin \gamma) \right] \right\}$$

Decay	Parameters	Observables
$D \rightarrow K_s^0 \pi^+ \pi^-$	$K_{\pm i}$ from $B^+ o Dh^+$ BPGGSZ[10]	160
	c_i, s_i from CLEO+BES-III[11], $\kappa_D = 1$	
$D \rightarrow K_s^0 K^+ K^-$	$K_{\pm i}$ from $B^+ o Dh^+$ BPGGSZ[10]	40
	c_i , s_i from CLEO+BES-III[12], $\kappa_D=1$	
$D \rightarrow K^{+}\pi^{-}$	$K_{+i} = 1$, $K_{-i} = r_D^2$, c_i , $s_i = \cos, \sin(-\delta_D)$, $\kappa_D = 1$	10
$D \rightarrow K^-\pi^+$	$K_{+i} = r_D^2$, $K_{-i} = 1$, c_i , $s_i = \cos, \sin(\delta_D)$, $\kappa_D = 1$	10
$D \rightarrow h^+h^-$	$K_{+i} = 1, K_{-i} = 1, c_i = 1, s_i = 0, \kappa_D = 1$	10
$D \rightarrow K^+\pi^-\pi^0$	$K_{+i} = 1$, $K_{-i} = r_D^2$, $c_i, s_i = \cos, \sin(-\delta_D)$, κ_D	10
$D \rightarrow K^-\pi^+\pi^0$	$K_{+i} = r_D^2$, κ_D , $K_{-i} = 1$, $c_i, s_i = \cos, \sin(\delta_D)$, κ_D	10
$D \rightarrow h^+h^-\pi^0$	$K_{+i} = 1$, $K_{-i} = 1$, $c_i = 1$, $s_i = 0$, $\kappa_D = (2F^+ - 1)$	10
$D \rightarrow K^-\pi^+\pi^+\pi^-$	$K_{\pm i}$ from $B^+ \to Dh^+$ BPGGSZ	80
	c_i, s_i from CLEO+BES-III, $\kappa_D = 1$	
$D \to \pi^+ \pi^- \pi^+ \pi^-$	$K_{+i} = 1$, $K_{-i} = 1$, $c_i = 1$, $s_i = 0$, $\kappa_D = (2F^+ - 1)$	10