

Rare Charm decays at LHCb

Alessandro Scarabotto LPNHE (Paris)

GDR-InF workshop

Paris, France

15-17 November 2021

Why study Rare Charm decays?

- Rare Charm decays receive contributions from flavor-changing neutral-current (FCNC) $c \rightarrow u\ell\ell$ processes
- Decays containing the charm quark are a unique up-type quark probe for these processes (complementary to the down-type quark studies in the K and B sectors)
- The FCNC transitions at tree level are forbidden in the SM, CKM and GIM suppressed (tiny SM prediction of $\mathcal{B}<10^{-9}$) [J. High Energ. Phys. 2013, 135 (2013)]
- Some New Physics (NP) models predict large enhancement in rates and CP and angular asymmetries
- Lepton Flavour Universality (LFU) in charm decays is still a relatively unexplored area:

Challenges

- Rare Charm decays are dominated by Long Distance (LD) interactions (resonant component) with tree-level dynamics
- Precise theoretical predictions are difficult on the branching fractions (the resonances contribution are dominated by QCD effects at very low energy and are evaluated with non-perturbative methods with high uncertainty)

3

Rare Charm decays at LHCb

Search for $\mathbf{D}^0 \rightarrow \mathbf{h}^+ \mathbf{h}^- e^+ e^-$ decays

• Make first observation of $D^0 \rightarrow \pi^+\pi^-e^+e^-$ and $D^0 \rightarrow K^+K^-e^+e^-$

Channel Total BF		BF: 675 <m(ee)<875 c<sup="" mev="">2</m(ee)<875>	BF: 1005 <m(ee)<1035 c<sup="" mev="">2</m(ee)<1035>	
$D^0 \rightarrow K^- \pi^+ e^+ e^-$	$< 4.1 imes 10^{-5}$ [1]	$(4.0 \pm 0.5) \times 10^{-6}$ [2]	$< 5.0 \times 10^{-7}$ [2]	
$D^0 ightarrow \pi^+\pi^- e^+e^-$	$< 7 \times 10^{-6}$ [1]	/	/	
$D^0 \to K^+ K^- e^+ e^-$	$< 1.1 imes 10^{-5}$ [1]	/	/	

[1] Phys. Rev. D 97, 072015, Apr 2018 (BESIII)

[2] <u>Phys. Rev. Lett. **122**</u>, 081802, Feb 2019 (BABAR)

Measured muon modes BFs

Channel	Branching fraction		
$D^0 \rightarrow K^- \pi^+ \mu^+ \mu^-$	$(4.2~\pm0.4) imes10^{-6}$ in dimuon range 675-875 MeV/ c^2 [3]		
$D^0 \rightarrow \pi^+ \pi^- \mu^+ \mu^-$	$(9.6 \pm 1.2) \times 10^{-7}$ [4]		
$D^0 \rightarrow K^+ K^- \mu^+ \mu^-$	$(1.54 \pm 0.32) \times 10^{-7}$ [4]		

[3] Phys.Lett.B 757 (2016), 558-567 (LHCb)

[4] Phys. Rev. Lett. 119, 181805, Oct 2017(LHCb)

5

Challenges with electrons

- The main challenge with electrons at LHCb is the bremsstrahlung effects due to the interactions of the electrons with the detector material
- Compared to muons, decays involving electrons show tails in their mass distributions due to the missed brem photon energy
- The Brem recovery procedure has a 50% efficiency on photons emitted before the magnet <u>Electron reconstruction at LHCb and Belle II presentation</u>

Analysis strategy

• Search for the decays and possible BF measurement relative to the $D^0 \rightarrow K^- \pi^+ e^+ e^-$ decay:

$$BF(D^{0} \to h^{+}h^{-}e^{+}e^{-}) = \frac{N(D^{0} \to h^{+}h^{-}e^{+}e^{-})}{N(D^{0} \to K^{-}\pi^{+}e^{+}e^{-})} \frac{\epsilon(D^{0} \to K^{-}\pi^{+}e^{+}e^{-})}{\epsilon(D^{0} \to h^{+}h^{-}e^{+}e^{-})} \times BF(D^{0} \to K^{-}\pi^{+}e^{+}e^{-})$$

- Data sample: Run2 (2015 to 2018)
- Selecting D^* -tagged decays: $D^{*+} \rightarrow D^0 (\rightarrow h^+ h^- e^+ e^-) \pi^+_{soft}$
- Measure integrated BF as well as differential BF in regions of di-electron mass
- Blind analysis: data removed in the signal D^0 mass range [1700-1900] MeV/ c^2
- Samples split into decays with and without brem photons attached to the electrons (brem categories)

input from BaBar measurement with 13 % relative uncertainty

Background studies

- There two main backgrounds:
 - Combinatorial background, reduced with a multivariate analysis
 - Mis-identified backgrounds, reduced using particle identification (PID) variables
- Probability of mis-id two π as two e is on the order of 10^{-4}

Decay	Branching fraction
$D^0 \to K^- \pi^+ e^+ e^-$	4×10^{-6}
$D^0 \to \pi^+\pi^- e^+ e^-$	~10 ⁻⁶
$D^0 \to K^+ K^- e^+ e^-$	$\sim 10^{-7}$
$D^0 \to K^- \pi^+ \pi^+ \pi^-$	8×10^{-2}
$D^0 \to \pi^+\pi^-\pi^+\pi^-$	8×10^{-3}
$D^0 \to K^+ K^- \pi^+ \pi^-$	2×10^{-3}

8

Multivariate discriminator

- Boosted Decision Tree (BDT) implemented to reject the combinatorial background
- Input: kinematic and topological variables of particle candidates
- Signal proxy: simulation signal sample
- Background proxy: data in the D^0 high mass region

Selection optimization

• The PID and BDT selection can be optimized maximizing the Punzi figure of merit:

$$FoM = \frac{\epsilon_{signal}}{\frac{5}{2} + \sqrt{N_{bkg}}}$$

[eConf C030908 (2003), MODT002]

- ϵ_{signal} : selection signal efficiency from simulation
- N_{bkg} : background yield in the signal region
- Background yield composed of:
 - Combinatorial: extrapolated from the D^0 high mass region
 - Mis-id: estimated from normalization channel

BDT vs PID FoM optimization

16/11/21

10

Fit on the normalization decay

Preliminary fit on $D^0 \rightarrow K^- \pi^+ e^+ e^-$ after selection optimized on the signal

Total signal yield: ~ 1400 events \rightarrow Very promising!

16/11/21

Fit on Run2 data $D^0 \rightarrow K^-\pi^+e^+e^-$: without brem photons attached (left) and with 1 or more (right). Signal, Combinatorial and Mis-ID $D^0 \rightarrow K^-\pi^+\pi^+\pi^-$.

Alessandro Scarabotto (LPNHE)

Conclusion and prospects

- Rare Charm decays constitutes a unique environment to look for New Physics, either with BF measurements or as SM null tests
- First LHCb study on the $D^0 \rightarrow h^+ h^- e^+ e^-$ decays
- The goal is to make a first observation of $D^0 \rightarrow \pi^+\pi^-e^+e^-$ and $D^0 \rightarrow K^+K^-e^+e^-$
- Expecting to observe $D^0 \rightarrow \pi^+\pi^-e^+e^-$ and observe/set limit for $D^0 \rightarrow K^+K^-e^+e^-$ For the future:
- Study of LFU ratio with muon modes
- CP and Angular asymmetries

Backup

Alessandro Scarabotto (LPNHE)

The LHCb experiment

- LHCb is a single arm forward spectrometer optimized for b and c physics
- Good vertex/momentum resolution and excellent particle identification
- LHCb has the world's largest sample of charm decays
- $\sigma (pp \rightarrow c\overline{c}) \sim O(mb)$ $\rightarrow \sim 10^{13}$ pairs produced up to now

[Int. J. Mod. Phys. A 30, 1530022 (2015)]

PID and Mis-id efficiencies

Ring Imaging Cherenkov (RICH) detectors

RICH 1 and RICH 2 with PID for kaons, pions, protons, and low-momentum leptons

Muon stations

Five muon stations (M1-M5) with high purity PID for muons

Calorimeters

Scintillating Pad Detector (SPD), Pre-Shower detector (PS), Electromagnetic Calorimeter (ECAL) and Hadronic Calorimeter (HCAL) with PID for electrons, photons and neutral pions

The PID varaibles are built as:

- 1. log likelihood difference particle hypotheses of X and π as reference: $\mathcal{L} = \mathcal{L}_{RICH} \cdot \mathcal{L}_{MUON} \cdot \mathcal{L}_{CALO}$
- 2. Neural network output, trained on simulation with info from the sub-detectors and tracking For example, the π to electron mis-id efficiency for different cuts on PID variables:
- ProbNNe > 0.2 \rightarrow 0.7 %
- ProbNNe > 0.5 \rightarrow 0.3 %
- ProbNNe > 0.9 \rightarrow 0.04%

PID performance in Run 2 at LHCb

Prospects for the LHCb Upgrades Physics Case Upgrade2

• Limits on BFs for Run3-4 (Upgrade1 2022-2030) and Run5 (Upgrade2 2030-...):

Mode	Run1-2 (1-6 ${\rm fb}^{-1}$)	Upgrade1 (50fb^{-1})	Upgrade2 (300fb^{-1})
$D^0 ightarrow \mu^+ \mu^-$	$6.2 imes 10^{-9}$	4.2×10^{-10}	1.3×10^{-10}
$D^+ \to \pi^+ \mu^+ \mu^-$	$6.7 imes 10^{-8}$	10^{-8}	3×10^{-9}
$D_s^+ \to K^+ \mu^+ \mu^-$	$2.6 imes 10^{-8}$	10^{-8}	3×10^{-9}
$\Lambda_c^+ \to p \mu^+ \mu^-$	$9.6 imes 10^{-8}$	1.1×10^{-8}	4.4×10^{-9}
$D^0 \to e^{\pm} \mu^{\mp}$	$1.3 imes 10^{-8}$	10^{-9}	4.1×10^{-9}

Statistical precision on asymmetries:

Mode	Run1-2 (1-6 ${\rm fb}^{-1}$)	Upgrade1 (50fb^{-1})	Upgrade2 (300fb^{-1})
$D^+ \to \pi^+ \mu^+ \mu^-$		0.2~%	0.08~%
$D^0 \to \pi^+\pi^-\mu^+\mu^-$	3.8~%	1 %	0.4~%
$D^0 \to K^- \pi^+ \mu^+ \mu^-$		0.3~%	0.13~%
$D^0 ightarrow K^+ \pi^- \mu^+ \mu^-$		12~%	5 %
$D^0 \to K^+ K^- \mu^+ \mu^-$	$11 \ \%$	4 %	$1.7 \ \%$

A. Contu - Towards ultimate precision in Flavor Physics, Durham (2-4 April 2019)

LFU in Rare Charm decays

- Why these decays are interesting:
 - Search for New Physics: contributions from FCNC processes that can be sensitive to new and unknown particles and interactions
 - Promising channels to test LFU in $c
 ightarrow u\ell\ell$ transitions :

$$R_{P_1P_2}^D = \frac{\int_{q_{\min}^2}^{q_{\max}^2} d\mathcal{B}/dq^2 (D \to P_1P_2\mu^+\mu^-)}{\int_{q_{\min}^2}^{q_{\max}^2} d\mathcal{B}/dq^2 (D \to P_1P_2e^+e^-)}$$

BSM effects can be seen even in the full q^2 region and soon within the reach of LHCb

full q^2	SM	BSM	LQ	hi q^2 SM	LQs	lo q^2 SM	BSM
$R^D_{\pi\pi}$	$1.00\pm \mathcal{O}(\%)$	0.850.99	SM-like	$1.00 \pm \mathcal{O}(\%)$	0.74.4		
R^D_{KK}	$1.00\pm \mathcal{O}(\%)$	SM-like	SM-like	NA	NA	$0.83\pm {\cal O}(\%)$	0.600.87

BDT input variables

- D0 flight direction angle
- D0 flight distance from PV
- D0 daughters distance of local approach (DOCA)
- D0 impact parameter from PV
- Soft pion P and PT
- Soft pion impact parameter from PV
- PT asymettry around Dst direction of flight
- D0 vertex chi2