

The nEDM collaboration

Cracow

The nEDM collaboration

under construction at the UCN source at the Paul Scherrer Institute (PSI)

Neutron spin precession

The actual upper limit (2020):

$$|d_n| < 1.8 \times 10^{-26} e \text{ cm } (90\% \text{ C.L.})$$

C. Abel et al. Phys. Rev. Lett. 124, 081803

$$2\pi f = \frac{2\mu}{\hbar} B \pm \frac{2d}{\hbar} |E| \qquad \Longrightarrow \qquad f(\uparrow \uparrow) - f(\uparrow \downarrow) = -\frac{2}{\pi \hbar} dE$$

$$\Rightarrow f(\uparrow\uparrow) - f$$

$$f(11) - f(11) = -\frac{a}{\pi \hbar} \frac{a}{\hbar} \frac{E}{E}$$

$$\frac{d}{d} = \frac{\pi\hbar}{2|E|} \left(f(\uparrow\downarrow) - f(\uparrow\uparrow) \right)$$

Neutron spin precession

The actual upper limit (2020):

$$|d_n| < 1.8 \times 10^{-26} e \text{ cm } (90\% \text{ C.L.})$$

C. Abel et al. Phys. Rev. Lett. 124, 081803

$$2\pi f = \frac{2\mu}{\hbar} B \pm \frac{2d}{\hbar} |E|$$

$$2\pi f = \frac{2\mu}{\hbar} B \pm \frac{2d}{\hbar} |E| \qquad \Longrightarrow \qquad f(\uparrow \uparrow) - f(\uparrow \downarrow) = -\frac{2}{\pi \hbar} dE$$

$$\frac{d}{d} = \frac{\pi\hbar}{2|E|} \left(f(\uparrow\downarrow) - f(\uparrow\uparrow) \right)$$

$$B = 1\mu T$$

Larmor frequency:
 $f = 30Hz$

$$E = 15kV/cm$$

with $d=10^{\text{-}26}e~cm$ 1 full turn of the spin: ~160 days

$$f = 10^{-8} Hz$$

Neutron spin precession

The actual upper limit (2020):

$$|d_n| < 1.8 \times 10^{-26} e \text{ cm } (90\% \text{ C.L.})$$

C. Abel et al. Phys. Rev. Lett. 124, 081803

$$2\pi f = \frac{2\mu}{\hbar} B \pm \frac{2d}{\hbar} |E| \qquad \Rightarrow \qquad f(\uparrow \uparrow) - f(\uparrow \downarrow) = -\frac{2}{\pi \hbar} dE$$

$$d = \frac{\pi \hbar}{2|E|} (f(\uparrow \downarrow) - f(\uparrow \uparrow))$$

$$f(\uparrow\uparrow) - f(\uparrow\downarrow) = -\frac{2}{\pi\hbar} \frac{d}{E}$$

$$\frac{d}{d} = \frac{\pi\hbar}{2|E|} \left(f(\uparrow\downarrow) - f(\uparrow\uparrow) \right)$$

$$B = 1\mu T$$
Larmor frequency:
 $f = 30Hz$

$$E = 15kV/cm$$

with $d = 10^{-26}e \ cm$ 1 full turn of the spin: ~160 days

$$f = 10^{-8} Hz$$

Solutions:

- Maximize the exposure of the neutrons in E -> **UCNs** (can be stored up to 15min)
- Maximize the statistics -> good UCN transport system, large UCN storage volume
- Control of the magnetic field -> Hg co-magnetometer; measurements of the m.field uniformity;

shielding: MSR, AMS.

Neutron spin precession

The actual upper limit (2020):

$$|d_n| < 1.8 \times 10^{-26} e \text{ cm } (90\% \text{ C.L.})$$

C. Abel et al. Phys. Rev. Lett. 124, 081803

$$2\pi f = \frac{2\mu}{\hbar} B \pm \frac{2d}{\hbar} |E|$$

$$2\pi f = \frac{2\mu}{\hbar} B \pm \frac{2d}{\hbar} |E| \qquad \Longrightarrow \qquad f(\uparrow \uparrow) - f(\uparrow \downarrow) = -\frac{2}{\pi \hbar} dE$$

$$\frac{d}{d} = \frac{\pi\hbar}{2|E|} \left(f(\uparrow\downarrow) - f(\uparrow\uparrow) \right)$$

$$B = 1\mu T$$
Larmor frequency:
 $f = 30Hz$ 1 for

$$E = 15kV/cm$$

with $d=10^{\text{-}26}e\ cm$ 1 full turn of the spin: ~160 days

$$f = 10^{-8} Hz$$

Solutions:

- Maximize the exposure of the neutrons in E -> **UCNs** (can be stored up to 15min)
- Maximize the statistics -> good **UCN transport system**, large UCN **storage volume**
- Control of the magnetic field -> Hg co-magnetometer; measurements of the m.field uniformity;

shielding: MSR, AMS.

Ramsey's method

- > Obtain neutrons with spin either UP or DOWN,
 Count the number of each, which depends on f_n

(a) Polarized UCNs fill the precession chambers

(b) UCNs are guided towards the spin-sensitive detectors.

f_n is affected by drifts of the magnetic field!

$$d = \frac{\pi \hbar}{2|E|} \left(f(\uparrow\downarrow) - f(\uparrow\uparrow) \right)$$

f_n is affected by drifts of the magnetic field!

Solution:

Mercury co-magnetometer

Polarized ¹⁹⁹Hg atoms precess in the same chambers

 $f_{\mbox{\scriptsize Hg}}$ measurement principle:

- a UV probe beam transverses the chambers
- -> record the absorbtion of the light (an oscillating signal), extract $f_{\mbox{\scriptsize Hg}}$

$$d = \frac{\pi\hbar}{2|E|} \left(f(\uparrow\downarrow) - f(\uparrow\uparrow) \right)$$

Simultaneous measurement of f_n and f_{Hg}

$$\mathcal{R} \equiv rac{f_n}{f_{
m Hg}} = \left|rac{\gamma_n}{\gamma_{
m Hg}}
ight| \mp rac{|E|}{\pi \hbar f_{
m Hg}} d_{
m n}$$

$$d_{
m n} = rac{\pi \hbar f_{
m Hg}}{4|E|} \left(\mathcal{R}_{\uparrow\downarrow}^{
m TOP} - \mathcal{R}_{\uparrow\uparrow}^{
m TOP} + \mathcal{R}_{\uparrow\downarrow}^{
m BOT} - \mathcal{R}_{\uparrow\uparrow}^{
m BOT}
ight).$$

The switch

AMS

M. Rawlik et al., Am. J. Physics 86(8), 602 (2018)

- 8 actively-controlled coils
- Spanning a volume of ~1000m^3
- Compensates field disturbances from outside
- Stable and uniform magnetic field around MSR

Thermohouse

- 6 mu-metal layers
- Inner dimensions 2.93m x 2.93m x 2.93m
- Quasi-static shielding factor 100'000
- Residual fields < 150 pT (in central volume)

Coil systems

Produce a very uniform B0 field (1μT)

Produce specific gradients

➤ Hold the UCN polarisation

> Neutron spin manipulation

Vacuum tank

- coil system cartography
- · offline control of high-order gradients
- searches for magnetic contamination

The magnetic field mapper

