

Neutron Mirror-Neutron oscillations at high magnetic fields

William Sáenz Arévalo

PhD director: T. Lefort

Nov 15 – 17, 2021 LPNHE GDR-InF annual workshop

Outline

- Why a mirror universe?
- Theoretical background
- State of the art
- Experimental setup
- Preliminary results

Why a mirror universe?

- An alternative solution to
 - o P-symmetry breaking in a global sense
 - o new sources of CP violation (baryogenesis)
 - o neutron lifetime puzzle
 - o dark matter

[Jack T. Wilson, et al, Phys. Rev. Res 2, 023316 (2020)]

• Hypothesis: there is a mirror coexisting universe where all particles would have a mirror twin

$$\mathcal{L}_{total} = \mathcal{L} + \mathcal{L}' + \mathcal{L}_{Mixing}$$

- Mixing between universe and mirror universe would be possible for neutral particles
- In particular, for neutrons under magnetic fields:

[Berezhiani, Z. (2009). Eur. Phys. Jou C, 64(3)]

Mixing term (measured quantity)

- Mixing between universe and mirror universe would be possible for neutral particles
- In particular, for neutrons under magnetic fields:

[Berezhiani, Z. (2009). Eur. Phys. Jou C, 64(3)]

Mixing term (measured quantity)

- Mixing between universe and mirror universe would be possible for neutral particles
- In particular, for neutrons under magnetic fields:

[Berezhiani, Z. (2009). Eur. Phys. Jou C, 64(3)]

Mixing term (measured quantity)

$$\hat{H} = \begin{pmatrix} \mu \vec{\sigma} \cdot \vec{B} & 1/\tau_{nn'} \\ 1/\tau_{nn'} & \mu \vec{\sigma} \cdot \vec{B'} \end{pmatrix}$$

• Oscillation probability given by

Mirror magnetic field

$$P_{\vec{B}}(t) = \frac{\sin^2[(\omega - \omega')t]}{2\tau_{nn'}^2(\omega - \omega')^2} + \frac{\sin^2[(\omega + \omega')t]}{2\tau_{nn'}^2(\omega + \omega')^2}$$
$$\mathcal{D}_{\vec{B}}(t) = \frac{\sin^2[(\omega - \omega')t]}{2\tau_{nn'}^2(\omega - \omega')^2} - \frac{\sin^2[(\omega + \omega')t]}{2\tau_{nn'}^2(\omega + \omega')^2}.$$

• Why working with ultra-cold neutrons (UCN)?

Why working with ultra-cold neutrons (UCN)?

$$R_{\rm tot} = R^{\beta} + R^{\rm up\text{-}scattering} + R^{\rm absorption} + R_B^{nn'}$$

... the asymmetry A depends only on the terms sensitive to *B*:

$$A = \frac{N_{\vec{B}} - N_{-\vec{B}}}{N_{\vec{B}} + N_{-\vec{B}}} \approx n_s \bar{\mathcal{D}}_{\vec{B}} \cos \beta = n_s \frac{\left\langle \sin^2[(\omega - \omega')t_f] \right\rangle}{2\tau_{nn'}^2(\omega - \omega')^2} \cos \beta$$

 n_s : number of wall collisions

$$A = \frac{N_{\vec{B}} - N_{-\vec{B}}}{N_{\vec{B}} + N_{-\vec{B}}} \approx n_s \bar{\mathcal{D}}_{\vec{B}} \cos \beta = n_s \frac{\left\langle \sin^2[(\omega - \omega')t_f] \right\rangle}{2\tau_{nn'}^2(\omega - \omega')^2} \cos \beta$$

exclusion regions in the oscillation parameters space

State-of-the-art

- Past UCN trap experiments have shaped the parameter space
- A 5σ anomaly [Berezhiani, 2012] proposed three regions of interest (a), (b) and (c)
 - o (a) and (b) were recently revised without positive confirmation
 - o region (c) is the aim of this work

[Berezhiani, Z., & Nesti, F. (2012). Eur. Phys. Jour. C, 72(4).]

UCN source

Experimental setup

N-N' oscillations at B in $50 - 1000 \mu T$

 No UCN storage → We look at the drop of the high-flux UCN beam

- Uniform B-field applied at the UCN guide
 - Solenoid
 - StdDev ~ 30 nT with I=1.7 A
 - 4.8 m long
 - 80 cm diameter
 - Compensation coils at both ends (I = 2.5 A)
 - Mu-metal shielding:

Measuring technique

• UCN Flux drop at field B relative to A and C

$$r = \frac{N_b}{N_a + N_c}$$

• Experimental sensitivity

$$r \approx 1 - \frac{t_f t_{\text{tot}}}{\tau_{nn'}^2}$$
 $\tau > \sqrt{\frac{t_f t_{\text{tot}}}{1 - r + 1.65\Delta r}}$

if t_f = 50 ms, t_{tot} = 1 s, and Δr = 5 * 10⁻⁴ : $\tau_{nn'}$ > 4 s

From $N_b/(N_a+N_c)$ to parameter exclusion

• We compare model predictions within the parameter space region of interest to data and produce exclusion plots

- Triple signal pattern due to construction of r: resonance could happen at B = B_a, B_b or B_c
- If τ too big, possible signals hidden in statistical fluctuations

Parameter space exclusion

Preliminary analysis:

- Exclusion from statistics $\chi^2 = \Sigma (r_{exp} r_{theo})^2 / \delta r_{exp}^2$
- Each maximum corresponds to a single cycle (data point)

Parameter space exclusion

Preliminary analysis:

- Exclusion from statistics $\chi^2 = \Sigma (r_{exp} r_{theo})^2 / \delta r_{exp}^2$
- Each maximum corresponds to a single cycle (data point)
- Region (c) excluded!

Thank you

Spare

Scanning high magnetic fields: UCN detection

GADGET detector developed at LPC ³He and CF₄ gas mixture:

1. UCN absorption

$$n$$
 + $^{3}He \rightarrow p$ (0.57 MeV) + t (0.19 MeV)

- 2. **CF**₄ scintillation due to **p** and **t** ionization/excitation.
- 3. Light collection by 3 PM tubes working in coincidences

State-of-the-art

- Mixing between universe and mirror universe would be possible for neutral particles
- In particular, for neutrons under magnetic fields, the Hamiltonian is expressed as

$$\hat{H} = \begin{pmatrix} \mu \vec{\sigma} \cdot \vec{B} & 1/\tau_{nn'} \\ 1/\tau_{nn'} & \mu \vec{\sigma} \cdot \vec{B'} \end{pmatrix} = \begin{pmatrix} \mu \vec{\sigma} \cdot \vec{B} & \overbrace{\epsilon} \\ \hline \epsilon & \mu \vec{\sigma} \cdot \vec{B'} \end{pmatrix} \xrightarrow{\text{Mixing term}}$$

• If B # B' the n-n' oscillation probability takes the form of the Rabi oscillations:

$$P_{nn'}(t) = \frac{\epsilon^2}{\epsilon^2 + (\omega - \omega')^2} \sin^2\left(\sqrt{(\omega - \omega')^2 + \epsilon^2}t\right). \qquad \sin^2 2\theta = \frac{\epsilon^2}{\epsilon^2 + (\omega - \omega')^2}$$

Passing-through-walls neutron experiments

[C. Stasser, et al., Eur. Phys. J. C 81, 17 (2021)]

Size of the B-field step (in a cycle)

MC simulation of tracks: StarUCN

Field maps: COMSOL

Validation:

B' = 1.008 mT tau = 10 s

P-violation?

- 1957 Wu's experiment showed beta emissions had a preferred direction, i.e., beta decay violates P-symmetry
- 7 years later, in order to keep CP invariance, a mirror or "shadow" universe was proposed (SM did not exist yet)

... then, even if 60 Co $^{}$ -particles prefer direction -B 60 Co $^{}$ $^{}$ -particles would prefer direction +B $^{}$

so restoring the global P-symmetry!

Reactor power ratio r

- Fluctuation in the detector as big as the ones in the reactor power
- Correlation coefficient: ρ = 0.42

