Algorithms for trajectography

P. Billoir, LPNHE Paris nov. 2021

main topics

- track finding
- track fitting
- progressive approach to Kalman Filter
- trajectory in a magnetic field
- vertex finding/fitting
- alignment/calibration

What do we want ?

measurements : gain of information

What was here?
vertices
3-momenta

> material : degradation of information

How to build the best estimator of the physical quantities?

the ingredients
 what is supposed to be known

- nature and precision of the measurements
- nature and magnitude of the "noises" in the matter (secondary interactions, multiple scattering, continuous energy loss) - equation of propagation (magnetic field)

Remarks: the nature of the particle (e, μ, π, etc) may be unknown; the points above may depend on the mass hypothesis

to be done

- grouping the local "hits" into track candidates (pattern recognition)
- fitting the parameters at origin (just after production)
if needed: iteration to solve the ambiguities
- inter/extrapolating to other detectors (RICH, muon chambers,...)
- if possible: information for particle identification ($\mathrm{dE} / \mathrm{dx}, \ldots$)
- finding primary/secondary vertices: topology and final fit

pattern recognition vs final track fit

- aim of patt. rec.: find association of hits. The precision needed is the power of separation between hits, not the error on their position.
- the final track fit should give the best estimator, using a precise estimation of the positions of hits and the error on them, and the full covariance matrices of the track parameters.
- in practice, these tasks may interfere, and the whole procedure may be a more or less intricate combination of finding and fitting steps

Note: in many cases, the limiting factor is not the hit measurement error, but the noise (mainly multiple scattering). Do not be more royalist than the king !

patt. rec. 1: extending tracks from seeds

 general principle: build seeds from a few shells, extrapolate to next shells as long as compatible hits are found tune criteria to:- accept a new point - confirm the track

- very flexible strategy (choice of shells for seeding, shell ordering,...)
- each new hit may be used to update the track parameters \rightarrow better extrapolation
- may consists in successive passes, iterations, etc
- may need much tuning to optimize the trade-off between efficiency/ghost rate/speed

patt. rec. 3: sample of routes

simulate trajectories of tracks of physical interest define the pattern of hits for each one collect enough patterns to cover the wanted phase space (e.g. $p_{t}>\min$) run time: flag the « filled» routes (flexible strategy to define the criteria of « filling »)

- OK for parallel computing with many small CPUs
- do not need any parameterization of trajectories
- large memory needed
- may produce multiple counting, ambiguities, ghosts

pattern recognition in brief

- no universal solution: the procedure has to be adapted to the layout of the experiment
- in most cases, it consists of parallelizable sub-algorithms and more global cleaning steps (rejection of poor candidates, resolution of ambiguities)
- the best method is often a combination of different algorithms in successive steps
- the pattern recognition may internally use some track fitting procedures for a more precise discrimination and extrapolation. In general, the fit may be simplified
- machine learning may help to optimize the strategy

gaussians in nD space

$$
\begin{aligned}
& \mathrm{G}(\mathbf{x})=\mathrm{K} \exp \left(-\Sigma \mathrm{W}_{\mathrm{ij}}\left(\mathrm{x}_{\mathrm{i}}-\mu_{\mathrm{i}}\right)\left(\mathrm{x}_{\mathrm{j}}-\mu_{\mathrm{j}}\right) / 2\right) \quad \mathrm{K}^{2}=\operatorname{det}(\mathrm{W}) /(2 \pi)^{\mathrm{n}} \\
& \text { covariance matrix } \mathrm{C}=\mathrm{W}^{-1}
\end{aligned}
$$

combining gaussians:
product: $\left(\boldsymbol{\mu}_{1}, \mathrm{~W}_{1}\right) \cdot\left(\boldsymbol{\mu}_{2}, \mathrm{~W}_{2}\right) \rightarrow\left(\mathrm{W}_{1}+\mathrm{W}_{2}\right)^{-1} \cdot\left(\mathrm{~W}_{1} \boldsymbol{\mu}_{1}+\mathrm{W}_{2} \boldsymbol{\mu}_{2}\right), \mathrm{W}_{1}+\mathrm{W}_{2}$ (« barycenter», addition of weight matrices)
convolution: $\left(\boldsymbol{\mu}_{1}, \mathrm{~W}_{1}\right) *\left(\boldsymbol{\mu}_{2}, \mathrm{~W}_{2}\right) \rightarrow \boldsymbol{\mu}_{1}+\boldsymbol{\mu}_{2},\left(\mathrm{~W}_{1}^{-1}+\mathrm{W}_{2}^{-1}\right)^{-1}$ (addition of biases, addition of covariance matrices)

1σ contours
quantitatively:
information = $1 /$ area ($1 /$ volume in nD)

a 1-parameter problem where is/was the flea?

a flea moves by jumps on x axis; initial position: x_{0} at each time step (independently):

- measurement (precision σ)
- jump (standard deviation τ)
what is the "best" estimator of the position x_{0} ? x_{n} ?
intuitively :
- if σ « τ : the instant one; the other ones are spoiled by the jumps
- if $\tau \sqrt{ } n<\sigma / V_{n}$ (that is $n \tau<\sigma$): the average of n measurements
- intermediate case: not obvious; truncated mean? truncated weighted mean?
- the best linear estimator should be a weighted combination of the measurements

How to evaluate the weights ?

The heavy optimal solution

One wants to estimate x_{0}, accounting for the correlations between successive measurements:

```
x}\mp@subsup{}{0}{\mathrm{ mes }}=\mp@subsup{\textrm{x}}{0}{}+\mp@subsup{\varepsilon}{0}{
x}\mp@subsup{}{1}{mes}=\mp@subsup{x}{0}{}+\mp@subsup{\eta}{1}{}+\mp@subsup{\varepsilon}{1}{
x}\mp@subsup{}{2}{mes}=\mp@subsup{x}{0}{}+\mp@subsup{\eta}{1}{}+\mp@subsup{\eta}{2}{}+\mp@subsup{\varepsilon}{2}{
```

ε_{k} : meas. error at time $\mathrm{k} ; \eta_{\mathrm{k}}$: jump at time k
covariance matrix C of the deviations $\Delta x_{k}=x_{k}^{m e s}-x_{0}$:
$\sigma^{2} 0 \quad 0 \quad 0 \ldots$
$0 \quad \sigma^{2}+\tau^{2} \quad \tau^{2} \quad \tau^{2} \ldots$
$0 \quad \tau^{2} \quad \sigma^{2}+2 \tau^{2} \quad 2 \tau^{2} \ldots$
$0 \quad \tau^{2} \quad 2 \tau^{2} \quad \sigma^{2}+3 \tau^{2} \quad 3 \tau^{2} \ldots$
$\chi^{2}=\Sigma\left(\mathrm{C}^{-1}\right)_{\mathrm{ij}} \Delta \mathrm{x}_{\mathrm{i}} \Delta \mathrm{x}_{\mathrm{j}} \rightarrow \mathrm{x}_{0}{ }^{\text {fit }}=\Sigma_{\mathrm{j}}\left(\mathrm{C}^{-1}\right)_{\mathrm{ij}} \mathrm{x}_{\mathrm{i}}^{\text {mes }}$
with n measurements: matrix ($n \times n$) to be inverted

more (almost for free)

- final position x_{n} :
forward filter (same procedure, going from 0 to n)
- intermediate position x_{k} (interpolation) : starting from both ends towards point k, combine independant backward and forward estimators $X_{n \rightarrow k}$ and $X_{0 \rightarrow k}$. $\mathrm{x}_{\mathrm{k}}{ }^{\text {mes }}$ may be omitted or included in one of them
(équivalent to the "smoother" in the kalmanian jargon)
- compatibility criterion : the variance of $x_{k}{ }^{\text {interp }}\left(w / o x_{k}{ }^{\text {mes }}\right)-x_{k}{ }^{\text {mes }}$ is V (interp) $+\sigma^{2}$
- abnormal jump detected by comparing $X_{n \rightarrow k}-X_{0 \rightarrow k}$ to the predicted variance
in brief : with the forward filter and the backward filter (keeping the intermediate results) one can obtain all that

But: if one point is modified (e.g. one measurement added or removed), all following steps have to be redone).For example: if working on-the fly (incorporating measurements in real time), the backward filter would be heavy ... but probably useless

linear approximation

In real world : no exact linear model

possible solution:

- choose convenient parameters \mathbf{p} (e.g. cartesian ou cylindrical coord.)
- define lines/surfaces (planes, cylinders,...) for measurements and material (the noise in a thin slice of material may be described by a matrix C_{b} with a correlation between position and direction)
- define a reference trajectory $\mathbf{T}_{\text {ref }}$ close to the true one (from patt. rec. or preliminar fit)
- propagate the deviations $\delta \mathbf{p}$ of \mathbf{p} from $\mathbf{T}_{\text {ref }}$ in the linear approximation:
$\mathrm{D}_{\mathrm{S} \rightarrow \mathrm{S}^{\prime}}=\partial\left(\delta \mathbf{p}^{\prime}\right) / \partial(\delta \mathbf{p})=\partial \mathbf{p}^{\prime} / \partial \mathbf{p}$ (jacobian matrix)
- apply the KF formalism; if needed, modify $\mathbf{T}_{\text {ref }}$ and iterate if the $\boldsymbol{\delta} \mathbf{p}$ are too large (it is also possible to change $\boldsymbol{T}_{\text {ref }}$ at some steps)

a (false) technical problem: how to begin?

at start: insufficient information to define p_{0}, and get inversible $\mathrm{C}_{0}, \mathrm{~W}_{0}$ example : the first measurement is x or a linear combination linéaire of x and $\mathrm{v} \rightarrow \mathrm{W}$ has a 0 eigenvalue (the p.d.f. is a stripe; p_{0} is degenerate along this stripe)
practically, the elementary matrix operations (convolution, propagation, product) are always possible :

- convolution : $\left(\mathrm{W}^{-1}+\mathrm{C}\right)^{-1}=(1+\mathrm{WC})^{-1} . \mathrm{W}$
$1+\mathrm{WC}$ is inversible in the useful cases
- propagation : $\mathrm{W}^{\prime}=\left(\mathrm{D}^{-1}\right)^{\mathrm{t}} . \mathrm{W} \cdot\left(\mathrm{D}^{-1}\right)$
- product : if W_{1} and/or W_{2} is singular, the system $\left(\mathrm{W}_{1}+\mathrm{W}_{2}\right) \mathrm{p}=\mathrm{W}_{1} \mathrm{p}_{1}+\mathrm{W}_{2} \mathrm{p}_{2}$ has a solution which does not depend on the choice of p_{1} and p_{2} on the axis of the stripes extreme case : parallel stripes : p is undefined, and the result in again a stripe

```
one can use the weight matrices in all steps
```

usual method with the standard KF (using covariance matrices); start with large values in C.
but: possible problems of precision

general case: 3D trajectory in Bfield (5 parameters)

which parameters?
it depends on the geometry of the tracking system
Examples:

- fixed target or endcap in a collider: surfaces: planes perpendicular to the beam (fixed z)
- position: x,y
- direction: θ (or η) and ϕ, or direction cosines c_{x}, c_{y}, or slopes $t_{x}=d x / d z, t_{y}=d y / d z$
- signed curvature (q / R or $\mathrm{q} / \mathrm{p}_{\mathrm{t}}$ ou q / p)
- barrel in a collider, with \mathbf{B} along z :
surfaces: cylinders (e.g. beam pipe + concentric shells) :
- position (angle Φ, z)
- direction (angles θ, ϕ)
- curvature (q / R or q / p_{t} ou q / p)
procedure: same as before, with 5 -vectors for the state, 5×5 matrices for W,C,D

"simple" measurement/noise

measurement of one coordinate, e.g. x:
$\mathrm{p}_{\text {meas }}=\left(\mathrm{x}_{\text {meas }}, 0,0,0,0\right) \quad \mathrm{W}_{\text {meas }}=\operatorname{diag}\left(1 / \sigma^{2}, 0,0,0,0\right)$
measurement of two coordinates x, y :
$\mathrm{p}_{\text {meas }}=\left(\mathrm{x}_{\text {meas }}, \mathrm{y}_{\text {meas }}, 0,0,0\right) \quad \mathrm{W}_{\text {meas }}=\operatorname{diag}\left(1 / \sigma_{\mathrm{x}}{ }^{2}, 1 / \sigma_{\mathrm{y}}{ }^{2}, 0,0,0\right)$
scattering in a surface:
$\mathrm{C}_{\mathrm{ms}}=(2 \mathrm{x} 2)$ submatrix on $\mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}$ (includes correlation)
scattering in a layer:
$\mathrm{C}_{\mathrm{ms}}=(4 \mathrm{x} 4)$ submatrix on $\mathrm{x}, \mathrm{y}, \mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}$ (includes correlations)

"oblique" measurements

- a combination is measured, e.g. $u=a x+b y$ (stereo) $\mathrm{w}_{\mathrm{u}}=1 / \sigma_{\mathrm{u}}^{2}$ ("weight" of the u measurement) contribution to χ^{2} : "stripe" in the (x, y) plane $\mathrm{w}_{\mathrm{u}}\left(\mathrm{u}^{\text {mes }}-\mathrm{ax}-\mathrm{by}\right)^{2}=\left(\mathrm{x}-\mathrm{x}^{\text {mes }}, \mathrm{y}-\mathrm{y}^{\text {mes }}\right)^{\mathrm{t}} \mathrm{W}\left(\mathrm{x}-\mathrm{x}^{\text {mes }}, \mathrm{y}-\mathrm{y}^{\text {mes }}\right)$ $x^{\text {mes }}, y^{\text {mes }}$: any point such that $a x^{\text {mes }}+b y^{\text {mes }}=u^{\text {mes }}$
$\mathrm{W}=(\mathrm{a}, \mathrm{b}) \cdot \mathrm{W}_{\mathrm{u}} \cdot(\mathrm{a}, \mathrm{b})^{\mathrm{t}}=1 / \sigma_{\mathrm{u}}^{2}\left(\mathrm{a}^{2} \mathrm{ab}, \mathrm{ab} \mathrm{b}^{2}\right)$ (matrix of rank 1)
- measurement in a detector which is oblique w.r.t the reference surface

trajectory of slope $\mathrm{a}=\mathrm{dx} / \mathrm{dz}$ measuring ζ (with error σ) in D amounts to measure $y=\zeta(\lambda+\mu a)$ with errror $|\lambda+\mu \mathrm{a}| . \sigma$
$\lambda, \mu:$ constants depending on geometry note: a is known at this stage (at least roughly)
general formulation for several measurements in the same detector:
contribution to $\chi^{2}=\left(\mathbf{p}-\mathbf{p}^{\text {mes }}\right)^{\mathrm{t}} \mathrm{W}_{\mathrm{p}}\left(\mathbf{p}-\mathbf{p}^{\text {mes }}\right)$ with $\mathrm{W}_{\mathrm{p}}=\mathrm{M}^{\mathrm{t}} \mathrm{W}_{\mathrm{m}} \mathrm{M}$
$=:$
$\mathrm{W}_{\mathbf{m}}$: weight matrix of the measurements \mathbf{m}; M: dependence $\mathbf{d m} / \mathbf{d p}$

exogenous measurements

some informations from non-trajectographic detectors may be injected at some stages on the filter:
examples:

- E measured in a calorimeter may be injected in the initial state of the backward filter as an estimator of q / p (if the matching and the sign q are inambiguous...)
- $\Delta \mathrm{E}$ mesured as a γ energy in a calorimeter may be injected at an intermediate point or the trajectory (more delicate, but may be very useful for electrons...)

not everything is gaussian in real world...

two kinds of "non-gaussianity"

- "short range" : e.g. measurement with uniform distribution in an interval smoothed by convolution (gaussian limit for large numbers)
- "with long tails": the gaussian limit may fail
practically, for charged particles :
- non-linearity in the propagation \rightarrow distortion of the p.d.f.
- multiple sattering : low probability of a diffusion at large angle (à la Rutherford)
- energy loss:
. $\Delta \mathrm{E}$ through ionisation is almost déterministic, with small fluctuations . more violent occurrences : δ-rays, and above all bremstrahlung (major problem for electrons)

If the gaussian approximation fails, what to do ?

God's algorithm

5 -vector \mathbf{p} to describe the state of the particle on a surface
chaining elementary operations on the p.d.f. $\mathrm{F}(\mathbf{p})$:

- measurement (local) : multiplication by freas $(\mathrm{m}(\mathbf{p}))$
- noise (local) : convolution with $\mathrm{f}^{\text {floise }}(\mathbf{p})$
- propagation : changement of variables $\mathrm{F}(\mathbf{p}) \rightarrow \mathrm{Fr}^{\mathrm{pr}}\left(\mathbf{p}^{\mathrm{pr}}(\mathbf{p})\right)$:
obvious difficulty: computing power needed for functions in a 5D space!

But : "On trouve avec le Ciel des accommodements" (Tartuffe)

the gaussian sum

principle: approximation of $\mathrm{F}(\mathbf{p})$, $\mathrm{f}^{\text {meas }}$ et $\mathrm{f}^{\text {noise }}$ by a sum of gaussian functions
$F(\mathbf{p})=\Sigma \alpha_{\mathrm{i}} \mathrm{G}_{\mathrm{i}}(\mathbf{p})$ with $\mathrm{G}_{\mathrm{i}}(\mathbf{p})=\mathrm{C}_{\mathrm{i}} \exp \left(-\left(\mathbf{p}-\mathbf{p}_{\mathrm{i}}\right)^{\mathrm{t}} \mathrm{W}_{\mathrm{i}}\left(\mathbf{p}-\mathbf{p}_{\mathrm{i}}\right) / 2\right)$

- works well in many cases for $\mathrm{f}^{\text {meas }}$ et $\mathrm{f}^{\text {floise }}$ (function of 1 variable)
- F is defined and positive everywhere if all $\alpha_{I}>0$, and it vanishes at infinity
- the operations (product, convolution, linear propagation) are easy and give again a sum of gaussians
product : $\left(\mathbf{p}_{1}, \mathrm{~W}_{1}\right) \times\left(\mathbf{p}_{2}, \mathrm{~W}_{2}\right)=\left(\left(\mathrm{W}_{1}+\mathrm{W}_{2}\right)^{-1}\left(\mathrm{~W}_{1} \mathbf{p}_{1}+\mathrm{W}_{2} \mathbf{p}_{2}\right), \mathrm{W}_{1}+\mathrm{W}_{2}\right)$
convolution: $\left(\mathbf{p}_{1}, \mathrm{~W}_{1}\right) *\left(\mathbf{p}_{2}, \mathrm{~W}_{2}\right)=\left(\mathbf{p}_{1}+\mathbf{p}_{2},\left(\mathrm{~W}_{1}^{-1}+\mathrm{W}_{2}^{-1}\right)^{-1}\right)$

But : the number of components increases multiplicatively possible remedies:

- suppress components of low amplitude
- merge nearby components into one
\rightarrow to be optimized for each case, depending on the final impact on physics results
in practice: used mainly for electron trajectories

propagation: the Runge-Kutta integration method

generic problem: $\quad y^{\prime}=f(t, y), \quad y\left(t_{0}\right)=y_{0} \quad$ solved by steps h in t

1 step

$$
\begin{aligned}
& k_{1}=f\left(t_{n}, y_{n}\right) \\
& k_{2}=f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} k_{1}\right) \\
& k_{3}=f\left(t_{n}+\frac{h}{2}, y_{n}+\frac{h}{2} k_{2}\right) \\
& k_{4}=f\left(t_{n}+h, y_{n}+h k_{3}\right)
\end{aligned}
$$

steps along z axis in a magnetic field RK applied to the state vector $\left(\mathrm{x}, \mathrm{y}, \mathrm{t}_{\mathrm{x}}, \mathrm{t}_{\mathrm{y}}\right)$

$$
\begin{aligned}
\frac{\mathrm{dx}}{\mathrm{dz}} & =t_{x} \\
\frac{\mathrm{dy}}{\mathrm{dz}} & =t_{y} \\
\frac{\mathrm{dt}_{\mathrm{x}}}{\mathrm{dz}} & =c \frac{q}{p} \sqrt{1+t_{x}^{2}+t_{y}^{2}}\left(t_{x} t_{y} B_{x}-\left(1+t_{x}^{2}\right) B_{y}+t_{y} B_{z}\right) \\
\frac{\mathrm{dt}_{\mathrm{y}}}{\mathrm{dz}} & =c \frac{q}{p} \sqrt{1+t_{x}^{2}+t_{y}^{2}}\left(\left(1+t_{y}^{2}\right) B_{x}-t_{x} t_{y} B_{y}-t_{x} B_{z}\right)
\end{aligned}
$$

parameterized propagation

idea: instead of using RK extrapolation for every track, precompute formulae to get a faster execution principle:

- chose a few reference surfaces that will contain « nodes» of the Kalman Filter.
- to go from the initial surface Σ_{i} to the final one Σ_{f}, express the state vector \mathbf{S}_{f} on Σ_{f} through analytical of tabulated functions of the components of the state vector \mathbf{S}_{i} on Σ_{i}
guiding criteria
- at infinite momentum, the trajectory is a straight line
- so, we can try an expansion in powers of q / p of $\Delta \mathbf{S}_{f}$, the difference between \mathbf{S}_{f} and the straight line extrapolation
- the precision should be small compared to the other sources of error (mainly multiple scattering)
- the phase space may be reduced for trajectories close to the origin (particles for physics analysis)
first example in the « endcap » description ($x, y, t_{x}, t_{y}, q / p$ at fixed z): propagate from $z_{i}=0$ to z_{f}
$-t_{x}$ and t_{y} are bounded by the acceptance ;
- x_{i} and y_{i} are small, so terms at first order in $x_{i} y_{i}$ are sufficient

2021/11/26
GDR InF - tracking

explicit formulae

$$
\Delta \mathbf{S}_{\mathbf{f}}=\sum_{k} \mathbf{A}_{k}\left(t_{x i}, t_{y i}\right)(q / p)^{k}+\sum_{k}\left(x_{i} \mathbf{B}_{k}\left(t_{x i}, t_{y i}\right)+y_{i} \mathbf{C}_{k}\left(t_{x i}, t_{y i}\right)\right)(q / p)^{k}
$$

this gives 4 expansions (for $x_{f} . x_{f}, t_{x f}, t_{x f}$), assuming p to be constant, e.g. for x_{f} :

$$
x_{f}=x_{i}+z_{f} t_{x i}+\sum_{k} A_{k}^{x}\left(t_{x i}, t_{y i}\right)(q / p)^{k}+\sum_{k}\left(x_{i} B_{k}^{x}\left(t_{x i}, t_{y i}\right)+y_{i} C_{k}^{x}\left(t_{x i}, t_{y i}\right)\right)(q / p)^{k}
$$

the coefficients A, B, C may be tabulated or expressed as analytic functions of $t_{x i}, t_{y i}$

byproducts

- jacobian matrix D: straightforward derivatives w.r.t. $x_{i}, y_{i}, q / p$, easy for $t_{x i}, t_{y i}$
- reverse propagation with the Newton-Raphson method:
starting from S_{f}, we want to find S_{i} such that $S_{i} \rightarrow S_{f}$
if $\mathrm{S}_{\mathrm{i}}{ }^{0}$ is a good approximation, and $\mathrm{S}_{\mathrm{i}}{ }^{0} \rightarrow \mathrm{~S}_{\mathrm{f}}{ }^{0}$, then $\mathrm{S}_{\mathrm{f}} \approx \mathrm{S}_{\mathrm{f}}{ }^{0}+\mathrm{D} .\left(\mathrm{S}_{\mathrm{i}}-\mathrm{S}_{\mathrm{i}}{ }^{0}\right)$ so $\mathrm{S}_{\mathrm{i}} \approx \mathrm{S}_{\mathrm{i}}^{0}-\mathrm{D}^{-1}$. $\left(\mathrm{S}_{\mathrm{f}}-\mathrm{S}_{\mathrm{f}}^{0}\right)$
that is: we just need a direct propagation + a linear transform if needed: iterate (the convergence is very fast)
- propagation from z_{i} to z_{f} with $\mathrm{z}_{\mathrm{i}} \neq 0: \mathrm{z}_{\mathrm{i}} \rightarrow 0$ then $0 \rightarrow \mathrm{z}_{\mathrm{f}}$
 jacobian matrix $\mathrm{D}_{\mathrm{if}}=\mathrm{D}_{0 \mathrm{f}}{ }^{-1} \cdot \mathrm{D}_{\mathrm{i} 0}$
possible implementation: choose a few «main surfaces» for the full formulae and complement by short range extrapolation (1 step of RK or simpler local parameterization)

2021/11/26
GDR InF - tracking

the full vertex fit

aim: use the convergence of trajectories to improve their reonstruction (add a virtual measurement and increase the lever arm)

first trial: fit the position as before, and introduce this point as an additional measurement to all tracks.
not optimal: this position is correlated to the other measurements on the track
second trial: iterative procedure: adjust alternatively the vertex position and the \mathbf{p}_{i} (3-momenta of the particles at the vertex) to fit the extrapolations to \mathbf{q}_{i} possible but the convergence may be slow (zig-zag path)

the vertex fit as a hierarchical fit

"all in one" method: from a sample of n trajectoires ($\mathbf{q}_{\mathrm{i}}, \mathrm{W}_{\mathrm{i}}$) at initial point (5 n parameters) fit simultaneously $3 \mathrm{n}+3$ parameters with the constraint of convergence:

- the position $\mathbf{V}(\mathrm{X}, \mathrm{Y}, \mathrm{Z})$ of a common origin
- the 3-momenta \mathbf{p}_{i} of the particles at this point (or equivalently $\mathrm{q} / \mathrm{p}_{\mathrm{i}}, \theta_{\mathrm{i}}, \phi_{\mathrm{I}}$)
tool : propagation function $\mathbf{q}=\mathbf{F}(\mathbf{V}, \mathbf{p})$ from vertex to initial point (simple if the initial point is close to the vertex, e.g. the perigee)

```
formulation with a global }\mp@subsup{\chi}{}{2}\mathrm{ :
find }\mathbf{V}\mathrm{ and the }\mp@subsup{\textrm{p}}{\textrm{i}}{}\mathrm{ which minimize
\chi
```

a priori : problem in a space of dimension $3 n+3$
actually : hierarchical problem: 3 global param. +3 particular param. for each track
$\min \left(\chi^{2}\right)=\min \mid \mathbf{V}\left[\Sigma \min \mid p_{i}\left(\mathbf{q}_{\mathrm{i}}{ }^{\text {mes }}-\mathbf{F}\left(\mathbf{V}, \mathbf{p}_{\mathrm{i}}\right)\right)^{\mathrm{t}} \mathrm{W}_{\mathrm{i}}\left(\mathbf{q}_{\mathrm{i}}{ }^{\text {mes }}-\mathbf{F}\left(\mathbf{V}, \mathbf{p}_{\mathrm{i}}\right)\right)\right]$
the "internal" et "external" minimizations have dimension 3
Note: the "nesting" remains valid without the gaussian approximation
that is: you can use e.g. Minuit with a fon which itself calls n times Minuit (it
works actually !)

other example of "hierarchical" fit (1)

sample of signals of the same shape, but with different amplitudes and dates: $\mathrm{S}(\mathrm{t})=\mathrm{A}_{\mathrm{i}} \mathrm{f}\left(\mathrm{t}-\mathrm{a}_{\mathrm{i}}\right)$; each one is measured at n times $\mathrm{t}_{\mathrm{k}} \rightarrow \mathrm{S}_{\mathrm{ik}}$ mes $=\mathrm{A}_{\mathrm{ik}} \mathrm{f}\left(\mathrm{t}_{\mathrm{k}}-\mathrm{a}_{\mathrm{i}}\right)+\varepsilon^{\text {mes }}$ the shape is defined by global parameters p_{1}, p_{2}, \ldots to be fitted
e.g. here $f(t)=0$ for $t<0, \exp \left(-p_{1} t\right)-\exp \left(-p_{2} t\right)$ for $t>0$

how to extract p_{1} and p_{2} from these measured signals ?

other example of "hierarchical" fit (2)

a set of events from the Surface Detector of AUGER (atmospheric showers)
signal in a tank at distance r_{i} from shower axis: $S_{i}=A_{i} f\left(r_{i}\right)$

- global parameters p, q for the shape, for example: $f(r)=1 / r^{p}\left(r+r_{1}\right)^{q}$
- individual parameters for each event: position ($\mathrm{x}_{\mathrm{i}}, \mathrm{y}_{\mathrm{i}}$) of the core, amplitude A_{i}

linearization

if $\mathbf{V} \approx \mathbf{V}_{0}$ (vertex) and $\mathbf{p}_{\mathrm{i}} \approx \mathbf{p}_{\mathrm{i} 0}$ (for every track):
$\mathbf{q}_{\mathrm{i}}=\mathbf{F}_{\mathrm{i}}\left(\mathbf{V}, \mathbf{p}_{\mathrm{i}}\right) \approx \mathbf{q}_{\mathrm{i} 0}+\mathrm{D}_{\mathrm{i}} \cdot\left(\mathbf{V}-\mathbf{V}_{0}\right)+\mathrm{E}_{\mathrm{i}} \cdot\left(\mathbf{p}_{\mathrm{i}}-\mathbf{p}_{\mathrm{i} 0}\right) \quad$ (short range propagation) E_{i} et $D_{i}:(5 \times 3)$ matrices, simple to compute if \mathbf{q}_{i} is at the perigee
setting $\Delta \mathbf{q}_{\mathrm{i}}=\mathbf{q}_{\mathrm{i}}^{\text {meas }}-\mathbf{q}_{\mathrm{i} 0}$, on can fit $\delta \mathbf{V}=\mathbf{V}-\mathbf{V}_{0}$ and the $\delta \mathbf{p}_{\mathrm{i}}=\mathbf{p}_{\mathrm{i}}-\mathbf{p}_{\mathrm{i} 0}$ to minimize $\chi^{2}=\Sigma\left(\Delta \mathbf{q}_{\mathrm{i}}-\mathrm{D}_{\mathrm{i}} \delta \mathbf{V}-\mathrm{E}_{\mathrm{i}} \delta \mathbf{p}_{\mathrm{i}}\right)^{\mathrm{t}} \mathrm{W}_{\mathrm{i}}\left(\Delta \mathbf{q}_{\mathrm{i}}-\mathrm{D}_{\mathrm{i}} \delta \mathbf{V}-\mathrm{E}_{\mathrm{i}} \delta \mathbf{p}_{\mathrm{i}}\right)$

- one block of 3 equations on the full set of parameters:
$\mathrm{A} \delta \mathbf{V}+\Sigma \mathrm{B}_{\mathrm{i}} \delta \mathbf{p}_{\mathrm{i}}=\mathbf{T}$ (1) with $\mathrm{A}=\Sigma \mathrm{D}_{\mathrm{i}}{ }^{\mathrm{t}} \mathrm{W}_{\mathrm{i}} \mathrm{D}_{\mathrm{i}}, \mathrm{B}_{\mathrm{i}}=\mathrm{D}_{\mathrm{i}}{ }^{\mathrm{t}} \mathrm{W}_{\mathrm{i}} \mathrm{E}_{\mathrm{i}}, \mathbf{T}=\Sigma \mathrm{D}_{\mathrm{i}}{ }^{\mathrm{t}} \mathrm{W}_{\mathrm{i}} \Delta \mathbf{q}_{\mathrm{i}}$
- n blocks de 3 equations on \mathbf{V} and one \mathbf{p}_{i} :
$B_{i}{ }^{t} \delta \mathbf{V}+C_{i} \delta \mathbf{p}_{i}=\mathbf{U}_{i}$ (2) with $C_{i}=E_{i}^{t} W_{i} E_{i}, \mathbf{U}=\Sigma E_{i}^{t} W_{i} \Delta \mathbf{q}_{i}$

(sparse system by blocks 3×3)

resolution of the linear system

from equations (2) one can express the $\delta \mathbf{p}_{\mathrm{i}}$ as functions of $\delta \mathbf{V}$

$$
\begin{equation*}
\delta \mathbf{p}_{\mathrm{i}}=\mathrm{C}_{\mathrm{i}}^{-1}\left(\mathrm{U}_{\mathrm{i}}-\mathrm{B}_{\mathrm{i}}^{\mathrm{t}} \delta \mathbf{V}\right) \tag{3}
\end{equation*}
$$

injecting these expressions in (1) one obtains an equation in $\delta \mathbf{V}$ only

$$
\begin{equation*}
\left(\mathrm{A}-\Sigma \mathrm{B}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}^{-1} \mathrm{~B}_{\mathrm{i}}^{\mathrm{t}}\right) \delta \mathbf{V}=\mathrm{T}-\Sigma \mathrm{B}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}^{-1} \mathrm{U}_{\mathrm{i}} \tag{4}
\end{equation*}
$$

(4) gives $\delta \mathbf{V}$ then each of the equations (3) gives $\delta \mathbf{p}_{\mathrm{i}}$
as a bonus, we obtain also the full $(3 n+3) \times(3 n+3)$ covariance matrix \ldots

$$
\begin{aligned}
& \operatorname{cov}(\mathbf{V}, \mathbf{V})=\left(\mathrm{A}-\Sigma \mathrm{B}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}^{-1} \mathrm{~B}_{\mathrm{i}}^{\mathrm{t}}\right)^{-1} \\
& \operatorname{cov}\left(\mathbf{V}, \mathbf{p}_{\mathrm{i}}\right)=-\operatorname{cov}(\mathbf{V}, \mathbf{V}) \mathrm{B}_{\mathrm{i}} \mathrm{C}_{\mathrm{i}}^{-1} \\
& \operatorname{cov}\left(\mathbf{p}_{\mathrm{i}}, \mathbf{p}_{\mathrm{j}}\right)=\delta_{\mathrm{ij}} \mathrm{C}_{\mathrm{i}}^{-1}+\mathrm{C}_{\mathrm{i}}^{-1} \mathrm{~B}_{\mathrm{i}}^{\mathrm{t}} \operatorname{cov}(\mathbf{V}, \mathbf{V}) \mathrm{B}_{\mathrm{j}} \mathrm{C}_{\mathrm{j}}^{-1}
\end{aligned}
$$

note that this procedure introduces correlations between the 3-momenta of all particles in the vertex, to be used in principle in the physics analysis ...

flexibility

(adding or removing one particle)

to add a track (fitted as $\mathbf{q}_{\mathrm{n}+1}, \mathrm{~W}_{\mathrm{n}+1}$):

- add a triplet of parameters $\delta \mathbf{p}_{\mathrm{n}+1}$
- add in (1) $D_{n+1}^{t} W_{n+1} D_{n+1}$ to A, and one term $B_{n+1}=D_{n+1}^{t} W_{n+1} E_{n+1}$
- add in (2) one block of equations $\mathrm{B}_{\mathrm{n}+1}{ }^{\mathrm{t}} \delta \mathbf{V}+\mathrm{C}_{\mathrm{n}+1} \delta \mathbf{p}_{\mathrm{n}+1}=\mathbf{U}_{\mathrm{n}+1}$
taking as starting values the result of the fit with n particles $\left(\mathbf{V}_{0}, \mathbf{p}_{\mathrm{i} 0}\right.$ for $\left.\mathrm{i}=1 \ldots \mathrm{n}\right)$:
$\left(A+A_{n+1}\right) \delta V+\sum B_{i} \delta p_{i}=T_{n+1}$
$B_{i}^{t} \delta V+C_{i} \delta p_{i}=0$ for $i=1 \ldots n$
$B_{n+1}{ }^{\mathrm{t}} \boldsymbol{\delta} \mathbf{V}+\mathrm{C}_{\mathrm{n}+1} \delta \mathbf{p}_{\mathrm{n}+1}=\mathbf{U}_{\mathrm{n}+1}$
resolution:
$\left(A-\Sigma B_{i} C_{i}^{-1} B_{i}^{t}+A_{n+1}-B_{n+1} C_{n+1}^{-1} B_{n+1}^{t}\right) \quad \delta V=T_{n+1}-B_{n+1} C_{n+1}^{-1} U_{n+1}$ only the terms in red are computed : fast procedure \rightarrow many combinations may be tried
removing a track $=$ adding it with a weight $-\mathrm{W}_{\mathrm{i}}$
Remark : the beam may be considered as a track to be added in a primary vertex (in general: very precise measurement of x, y, but z is undefined)

vertex fit with constraint(s)

examples:

- prompt or distant decay (neutral $\rightarrow+-$) with mass hypothesis
$-\gamma \rightarrow e^{+} e^{-}$with parallel tracks at the decay point;
in both cases: \mathbf{p} points towards the main vertex (or just the beam line)
- more generally: combination of kinematical and geometrical constraints

Lagrange multipliers: universal tool
$\min \mid \mathbf{p}(\mathrm{F}(\mathbf{p}))$ with the constraint $\mathrm{C}(\mathbf{p})=0 \Leftrightarrow \min \mid \mathbf{p}, \lambda(\mathrm{F}(\mathbf{p})+\lambda \mathrm{C}(\mathbf{p}))$
easy to solve in the following approximation around the minimum (or maximum) :

- the χ^{2} or the log-likelihood is a quadratic function of the variations of parameters
- the constraint is linear
linear system $\rightarrow \mathbf{p}$ as a function of λ, then elimination of λ with a linear equation
generalisation to several constraints:
$\min \mid \mathbf{p}, \lambda_{1}, \lambda_{2}, \ldots\left(\mathrm{~F}(\mathbf{p})+\lambda_{1} \mathrm{C}_{1}(\mathbf{p})+\lambda_{2} \mathrm{C}_{2}(\mathbf{p})+\ldots\right)$

summary for track and vertex fit

- one can build a track fitting procedure by linking elementary operations on the local parameters trajectory (adding one measurement, adding one noise, propagation)
- when putting these operations in order, each step uses independent inputs
- in the linear approximation (almost always valid in useful cases), the steps are simple manipulations of 5 -vectors and (5×5) matrices
- in the gaussian approximation one can define quality tests in terms of Prob(chi2), either for the global fit, or for a given point (detection of outliers)
- exogenous measurements may be injected at some steps (e.g. detectable energy losses)
- if needed, some non gaussian effects may be taken into account (esp. for electrons)
- the track fit may be coupled to the pattern recognition to refine prediction to a layer (a large variety de strategies are possible)
- the vertex fit may be achieved in a fast procedure (CPU time proportional to the number of tracks) with flexibility (adding or removing a track is easy)
- geometrical and physical constraints may be added to improve the final reconstruction: invariant masses, combination of connected vertices in a decay tree

2021/11/26
GDR InF - tracking

procedures of alignment

detector $=$ assembly of elements supposed to be rigid geometrical degrees of freedom for each element: translation, rotation; expansion, contraction?
first order: position of frames (« hardware » sensors) second order: fine corrections (position of sensitive elements) using signals from tracks (beam, cosmics, collision data)

calibration

determine shape of signals, biases, measurement errors

- simulation
- external inputs (beam, cosmics, point sources, pulses on elements of the electronic chain)
- internal
- with or without B field

1. beam + external hodoscope

module to be internally aligned

the module should be moveable: impossible for big detectors

2. cosmic rays

mainly vertical (esp. in underground places) ; random impact position

may connect different modules of a big detector no hodoscope! weak modes may exist

3. internal track sample

large statistics, real time data, but useful tracks come mainly from origin

momentum dependent: again weak modes

just for fun

when using a sample of tracks to make an alignment, you have to adjust:

- a few global parameters (the geometrical ones you want to obtain)
- individual parameters for each track (position, direction + curvature if magnetic field)
this is again a hierachical fit!

examples of correlation between alignment and field map

in a field mainly along y axis:

- positive/negative particles get in average
negative/positive $\mathrm{x}, \mathrm{t}_{\mathrm{x}}$: the $\mathrm{x}>0$ and $\mathrm{x}<0$ have opposite average charge populations
a positive δB_{z} pushes both signs upwards partially compensated by pushing a z-plane downwards (negative $\Delta \mathrm{y}$)

$\ldots=$
- an increase of $\left|\mathrm{B}_{\mathrm{y}}\right|$ increases the divergence
partially compensated by pushing a z-plane
- towards negative z
- if separate alignment of x-sides: pushing them inopposite directions
$-$an alignment by tracks may give different results depending on the range of momenta

backup

a problem of precision (LHCb)

trying to implement the Kalman Filter included in PrPixelTracking (Velo) in single precision on a GPU:

- discrepancies between the GPU and the CPU results, and between them and the weight/information algorithm, when applied to the same data
- more precisely: the discrepancies (on fitted position/slope, covariance matrix, chi2) decrease with the number of points in the track
- agreement between all versions in double precision, and between single and double with the weight formalism
- the discrepancies increase with the initial value given to $\operatorname{cov}(T x, T x)$ and $\operatorname{cov}(T y, T y)$ at the beginning of the loop over points

origin and solution of the problem

```
// compute the prediction
```

const float $d z=$ zhit $-z$;
const float predx $=\mathrm{x}+\mathrm{dz} * \mathrm{tx}$;
const float dz_t_covTxTx $=\mathrm{dz} * \operatorname{covTxTx}$;
const float predcovXTx $=\operatorname{cov} X T x+d z _t _c o v T x T x ;$
const float $d x _t _c o v X T x=d z * \operatorname{covXTx}$;
const float predcovXX $=\operatorname{cov} X X+2 * d x _t _\operatorname{cov} X T x+d z * d z _t _c o v T x T x ;$
const float predcovTxTx $=$ covTxTx;
// compute the gain matrix
const float $\mathrm{R}=1.0 /(1.0 /$ whit + predcovXX);
const float $\mathrm{KX}=\operatorname{predcovXX} * \mathrm{R}$;
const float $\mathrm{KTx}=$ predcovXTx $* \mathrm{R}$;
// update the state vector
const float $r=x h i t-p r e d x ;$
$x=p r e d x+K x * r$;
$t x=t x+K T x * r$;
// update the covariance matrix. we can write it in many ways ...
$\operatorname{covXX} / *=$ predcovXX $-K x *$ predcovXX */ $=(1-K x) *$ predcovXX;
covXTx /*= predcovXTx - predcovXX * predcovXTx / R */ = (1-Kx) * predcovXT
covTxTx $=$ predcovTxTx $-K T x *$ predcovXTx;
// return the chi2
return $\mathrm{r} * \mathrm{r} * \mathrm{R}$;
at first point $\mathrm{C}_{\mathrm{xx}}=\sigma^{2}, \mathrm{C}_{\mathrm{TxTx}}=\mathbf{B i g}$ (in this code: $\mathbf{B i g}=1$) the loop (pred, upd, noise) begins at the second point with a nearly singular predicted covariance :
$\mathrm{C}^{\prime}{ }_{\mathrm{xx}}=\sigma^{2}+\mathbf{B i g}^{2} \Delta \mathrm{z}^{2}$
$\mathrm{C}^{\prime}{ }_{\mathrm{xTx}}=\boldsymbol{\operatorname { B i g }} \Delta \mathrm{z}, \mathrm{C}^{\prime}{ }_{\mathrm{TxTx}}=\mathbf{B i g}$
the «gain» business mixes Big and real quantities \rightarrow rounding errors !
here: making $\operatorname{Big} \rightarrow \infty$ in the results after updating at point 2 :
$\mathrm{x}=\mathrm{x}_{2} \quad \mathrm{Tx}=\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right) / \Delta \mathrm{z}$
$\operatorname{cov}=\left(\sigma^{2}, \sigma^{2} / \Delta \mathrm{z}, 2 \sigma^{2} / \Delta \mathrm{z}^{2}\right)$
$\chi^{2}=0$
the KF machinery was useless in the first step !
conclusion: do not rely blindly on black boxes put your eyes inside, and put your hands if needed

