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main topics



•  track finding 
 
•  track fitting 
 
•  progressive approach to Kalman Filter 
 
•  trajectory in a magnetic field 
 
•  vertex finding/fitting 
 
•  alignment/calibration 
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the good old times (bubble chambers)



pattern recognition…  
by hand 
(sophisticated) track fit 
by computer 
 
already there: particle 
identification (density 
of bubbles) 
 

in the 70’s: more or less automatic scanning of pictures 
but in the same time: bubble chambers are replaced by electronic detectors: 
spark chambers, wire chambers,… 
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“microscopic” pattern recognition ���
example of TREx



M. Haigh, P.Denner, for DUNE 

neutrino experiment: 
rare events, few tracks, but 
complex topology 
 
aim: find a precise description of  
all details 
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What do we want  ? 



measurements : gain of information 

material  : degradation of information  

What was 
here ?








vertices 


3-momenta



How to build the best estimator of the physical quantities ?
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the ingredients



•  nature and precision of the measurements 
•  nature and magnitude  of the “noises”  in the matter  
   (secondary interactions, multiple scattering, continuous energy loss)  
•  equation of propagation (magnetic field) 
 
Remarks: the nature of the particle (e,µ,π, etc) may be unknown; the points 
above may depend on the mass hypothesis 

 to be done     


•  grouping  the local “hits” into track candidates (pattern recognition)   
•  fitting the parameters at origin (just after production) 
         if needed: iteration to solve the ambiguities 
•     inter/extrapolating to other detectors (RICH, muon chambers,…)  
•     if possible: information for particle identification (dE/dx,…) 
•     finding primary/secondary vertices: topology  and final fit 

what is supposed to be known
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local measurements (“hits”)



ideally: one or two coordinate(s) of a point on a surface 
practically: often an indirect measurement (e.g. a drift time) or a 
combination of elemantary signals (a « cluster ») 

drift time 
 
distance to axis 
 
combination of 
position in plane 
and incidence angle  
 

detector plane avalanche            charges induced in pads 

combination of several amplitudes 
       precise estimation of coordinate 
(much better than pad size) 
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pattern recognition vs final track fit



•  aim of patt. rec.: find association of hits. The precision needed is the power of 
separation between hits, not the error on their position. 

•  the final track fit should give the best estimator, using a precise estimation of 
the positions of hits and the error on them, and the full covariance matrices of 
the track parameters.  

•  in practice, these tasks may interfere, and the whole procedure may be a more 
or less intricate combination of finding and fitting steps 

       
 Note: in many cases, the limiting factor is not the hit measurement error,  but the 
noise (mainly multiple scattering). Do not be more royalist than the king ! 
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patt. rec. 1: extending tracks from seeds



build seed 
confirm    extrapolate 

general principle: build 
seeds from a few shells, 
extrapolate to next shells 
as long as compatible hits 
are found 
tune criteria to: 
-  accept a new point  
-  confirm the track 

•  very flexible strategy (choice of shells for seeding, shell ordering,…) 
 
•  each new hit may be used to update the track parameters ! better extrapolation 
 
•  may consists in successive passes, iterations, etc 
 
•  may need much tuning to optimize the trade-off between  efficiency/ghost rate/speed  
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patt. rec. 2: Hough transform


first level: detect aligned points; 
 
straight line  y = ax+b 
x,y ! 1 line im (a,b) plane 
 
aligned points ! accumulation in 
(a,b) plane 
 
alternative form 
ρ  cos (θ−θ0) = ρ0 
(avoids singularity for vertical lines) 
  

x a 

b y 

generalization: detection of curves in nD space described by a simple 
combination of few parameters (if many of them: huge number of pixels needed)  
 
practical implementation: simple computation + large memory 
OK for parallel computing with many « small »  CPUs (FPGA, GPU,…) 
flexibility: possibility of zoom in a restricted zone of large counting 
but: high sensitivity to noise (ghosts) 
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patt. rec. 3: sample of routes



•  simulate trajectories of tracks of 
physical interest 

•  define the pattern of hits for each one 
•  collect enough patterns to cover the 

wanted phase space (e.g. pt > min) 
•  run time: flag the « filled » routes 

(flexible strategy to define the criteria 
of « filling ») 

•  OK for parallel computing with many small  CPUs  
•  do not need any parameterization of trajectories 
•  large memory needed 
•  may produce multiple counting, ambiguities, ghosts 
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pattern recognition in brief



•  no universal solution: the procedure has to be adapted to the layout of the 
experiment   

•  in most cases, it consists of parallelizable sub-algorithms and more global 
cleaning steps (rejection of poor candidates, resolution of ambiguities) 

 
•  the best method is often a combination of different algorithms in 

successive steps 

•  the pattern recognition may internally use some track fitting procedures 
for a more precise discrimination and extrapolation. In general, the fit may 
be  simplified 

•  machine learning may help to optimize the strategy 
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basic tool for track fitting : ���
Kalman Filter (progressive method)



found in many textbooks… (here : Wikipedia) 

+ even more complicated expression for the “smoothing” 
 
we will present something equivalent (and hopefully more 
intuitive !)  and try to go further 
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playing with gaussians���
(or other distributions…)



G1 G2 

G1.G2 

G1*G2 
G1 

G2 

combination of independent measurements 
 product of p.d.f. = addition of informations 

combination of independent errors 
convolution of p.d.f. = addition of noises 

for gaussians: 
G1(µ1,σ1).G1(µ2,σ2) = G1(µ’,σ’) 
µ’ = (µ1/σ1

2+µ2/σ2
2) / (1/σ1

2+1/σ2
2) 

1/σ’2 = 1/σ1
2 + 1/σ2

2 

for gaussians: 
G1(µ1,σ1)*G1(µ2,σ2) = G1(µ’’,σ’’) 
µ’’ = µ1+µ2 
σ’’2 = σ1

2 + σ2
2 
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gaussians in nD space


G(x) = K exp (− Σ Wij (xi−µi) (xj−µj)/2)      K2 = det(W)/(2π)n 
covariance matrix  C = W−1 
 

combining gaussians: 
 
product:  (µ1,W1) . (µ2,W2)  ! (W1+W2) −1.(W1µ1+W2µ2)   ,  W1+W2 
     (« barycenter » , addition of  weight matrices)   
 
convolution:  (µ1,W1) * (µ2,W2)  ! µ1+µ2  , (W1

−1+W2
−1) −1 

      (addition of biases, addition of covariance matrices) 

1σ contours 
 
quantitatively: 
information = 1/area 
(1/volume in nD) 

G1.G2 G1*G2 

G1 

G2 
G2 

G1 
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a 1-parameter problem���
where is/was the flea ?



 
    
                 x0     x1 …                                                         xn 
 
a flea moves by jumps on x axis; initial position : x0 
at each time step (independently): 
•  measurement (precision σ) 
•  jump (standard deviation τ) 
what is the “best” estimator of the position x0 ? xn ?  

intuitively : 
•  if σ « τ : the instant one; the other ones are spoiled by the jumps 
•  if τ√n « σ/√n (that is nτ « σ): the average of n measurements 
•  intermediate case: not obvious; truncated mean ? truncated weighted mean ? 
 
•  the best linear estimator should be a weighted combination of the measurements 
How to evaluate the weights ? 
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The heavy optimal solution


One wants to estimate x0 , accounting for the correlations between 
successive measurements: 
x0

mes  = x0 + ε0 
x1

mes  = x0 + η1 + ε1 
x2

mes  = x0 + η1 + η2 + ε2 
… 
εk : meas. error at time k   ;   ηk : jump at time k  
 
  covariance matrix C of the deviations Δxk = xk

mes - x0 : 
   σ2       0        0         0  … 
   0   σ2+τ2      τ2            τ2 … 
   0     τ2     σ2+2τ2      2τ2 … 
   0     τ2          2τ2      σ2+3τ2    3τ2 … 
    …… 
χ2 = Σ (C-1)ij Δxi Δxj   →  x0

fit = Σj (C-1)ij xi
mes 

with n measurements:  matrix (n×n) to be inverted 
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A better option: the progressive method


The measurement informations are included one at a time, and the degradation (jump) is 
accounted for at each step  
 
the key point: at each step, one has to combine two independent informations: 
- the optimal combination of all previous measurements  
- the measurement at this time: this gives the optimal combination of previous + this one  
then, this new combination undergoes the next jump, so it is degraded: the error after the 
jump is the quadratic addition of the error before and the jump itself, which are independent  
 
combining independent measurements (adding informations) 
(x’, σ’) + (x”, σ”) ! (w’x’+w”x”)/(w’+w”)       with   w’=1/σ’2  ,  w”=1/σ”2 

combining independent errors:  σ’ and σ” ! (σ’2 +σ”2)1/2   
 
at each step: a χ2 may be updated 
 
with n steps: the number of operations is proportional to n 
 
recipe for the best estimate of the initial state:  
•  start from the last point 
•  go backwards, down to the first one 
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one step of the progressive estimator



operations on the 
density of probability 
noise : convolution 
combination : product 

χ2 if gaussian errors: 
. parabolic shape 
. Prob(χ2,ndeg) is exploitable 

previous 
measurements 

noise 

new measurement 

combination 

 previous χ2
min 

 new χ2
min 
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more (almost for free) 
•  final position  xn : 
 forward filter (same procedure, going from 0 to n) 

in brief : with the forward filter and the backward filter (keeping the 
intermediate results) one can obtain all that


  
But: if one point is modified (e.g. one measurement added or removed), all 
following steps have to be redone).For example: if working on-the fly 
(incorporating measurements in real time), the backward filter would be heavy 
…  but probably useless 

•  abnormal jump detected by comparing Xn→k−X0→k to the predicted 
variance 

•  compatibility criterion :  the variance of xk
interp(w/o xk

mes) – xk
mes is V(interp) + σ2  

•  intermediate position xk (interpolation) : starting from both ends towards point 
k, combine independant backward and forward estimators Xn→k and X0→k .  
xk

mes may be omitted or included in one of them 
(équivalent to the “smoother” in the kalmanian jargon) 
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linear problem with 2 parameters���
(movement with “noisy” speed)



initial conditions:  x0 , v0 (to be estimated) 
at each time step Δt : 
•   measurement of x (error εk , variance σ2) 
•   random variation ζk of vk (variance ρ2) 
•  displacement vk.Δt  
xk

mes
  = x0 + (v0+ ζ1) Δt + (v0+ ζ1 + ζ2) Δt  + …+ εk 

→ correlation (xk
mes, xj

mes) through the ζi 

x 

t 

x0 
v0 
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progressive fit: one step “on-the fly” ���
in the (x,v) plane



x 

v 

previous 
measurements: 
state vector po(xo,vo) 
cov. matrix Co(po) 

propagation 
p’ (xo+voΔt, vo) 
C’ = D.Cb.Dt 
             1  Δt  
            0   1 
W’ = (Dt)-1.W.D 

noise on v 
 Cb =  Co+B 
          0    0 
          0    ρ2 
degraded 
information 
 

B = 

combination with a new 
measurement  pn 
W’=(C’)-1 , Wn=( Cn)-1 
(W’+Wn) p” = W’p’+Wnpn  
C”(p”) = (W’+Wn)-1 
gained information 

D = 

22 
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problem with 3 parameters���
(simplified planar trajectograph)



parabolic approximation:  y(x) = y0 + a0 x + c0 x2/2 
physical parameters : y0 , py/px , q/p  (c = 0.3B q/p) 
the measurements are linear functions of the parameters


→  same formalism, with C,W,D as (3x3) matrices





if  non negligible energy loss ΔE: introduce Δc in the propagation step  
noise : multiple scattering (affects a) ; fluctuation of  ΔE (affects c) 
NB: to evaluate the noise terms, E (that is c) needs to be evaluated  

y 

x 
y0,a0,c0 



2021/11/26 GDR InF - tracking 24 

 linear approximation 
In real world : no exact linear model 
possible solution:  
 
•  choose convenient parameters p (e.g. cartesian ou cylindrical coord.) 
 
•  define lines/surfaces (planes, cylinders,…) for measurements and material 
(the noise in a thin slice of material may be described by a matrix Cb with a correlation 
between position and direction)  
 
•  define a reference trajectory  Tref  close to the true one (from patt. rec. or 
preliminar fit) 

•  propagate the deviations δp of p from Tref in the linear approximation: 
  DS→S’ = ∂(δp’) / ∂(δp) = ∂p’/∂p  (jacobian matrix) 
 
•  apply the KF formalism; if needed, modify Tref  and iterate if the δp are too 
large (it is also possible to change Tref  at some steps) 
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a (false) technical problem: how to begin ? 
at start: insufficient information to define  p0 , and get inversible C0 ,W0  
example : the first measurement is x or a linear combination linéaire of x and v → W has a 0  
eigenvalue (the p.d.f. is a stripe; p0 is degenerate along this stripe)  
 
practically, the elementary matrix operations (convolution, propagation, product) are always 
possible : 
 
•  convolution : (W-1+C) -1 = (1+WC) -1.W 
1+WC is inversible in the useful cases 
 
•  propagation : W’ = (D-1)t.W.(D-1) 

•  product : if Wl and/or W2 is singular, the system (W1+W2) p = W1p1+W2p2  has a solution 
which does not depend on the choice of p1 and p2 on the axis of the stripes 
extreme case : parallel stripes : p is undefined, and the result in again a stripe 



one can use the weight matrices in all steps





usual method with the standard KF (using covariance matrices); start with large values in C. 
but: possible problems of precision 
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general case: 3D trajectory in Bfield���
(5 parameters) 

 which parameters ?  
it depends on the geometry of the tracking system 
 
Examples: 
•  fixed target or endcap in a  collider: 
     surfaces: planes perpendicular to the beam (fixed z) 
    - position: x,y 
    - direction: θ(or η) and φ,  or direction cosines cx,cy, or slopes tx=dx/dz, ty=dy/dz 
    - signed curvature (q/R or q/pt ou q/p)  
•  barrel in a  collider, with B along z :  
   surfaces: cylinders (e.g. beam pipe + concentric shells) : 
   - position (angle Φ, z) 
   - direction (angles θ, φ) 
   - curvature (q/R or q/pt ou q/p) 
 
procedure: same as before, with 5-vectors for the state, 5x5 matrices for W,C,D 
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“simple” measurement/noise 

measurement of one coordinate, e.g. x: 
pmeas = (xmeas ,0,0,0,0)       Wmeas= diag(1/σ2,0,0,0,0) 
 
measurement of two coordinates x,y: 
pmeas = (xmeas ,ymeas,0,0,0)       Wmeas= diag(1/σx

2, 1/σy
2,0,0,0) 

 
scattering in a surface: 
Cms = (2x2) submatrix on tx,ty (includes correlation) 
 
scattering in a layer: 
Cms = (4x4) submatrix on x,y,tx,ty (includes correlations) 
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 “oblique” measurements 
•  a combination is measured, e.g. u = ax+by (stereo) 
wu = 1/σu

2  (“weight” of the u measurement)  
contribution to χ2 : “stripe” in the (x,y) plane 
 wu(umes-ax-by)2 = (x-xmes,y-ymes)t W (x-xmes,y-ymes)   
 xmes,ymes : any point such that axmes + bymes = umes 
W = (a,b).wu.(a,b)t = 1/σu

2 (a2 ab , ab b2) (matrix of rank 1) 

•   measurement in a detector which is oblique w.r.t the reference surface 
  

  

 

 
 
 

O 

trajectory of slope a = dx/dz 
measuring ζ (with error σ) in D  
amounts to measure y = ζ (λ+µa) with  
errror  |λ+µa|.σ 
λ,µ : constants depending on geometry 
note: a is known at this stage (at least 
roughly) 

D 

reference surface 
                     z=0 

ζ 
x 

general formulation for several measurements in the same detector: 
 contribution to χ2 = (p-pmes)t Wp (p-pmes)  with Wp= MtWmM 

Wm : weight matrix of the measurements m ;  M: dependence dm/dp 

x 

y 

« stereo » measurement 

track 

u v 
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exogenous measurements 

some informations from non-trajectographic detectors may be injected at some stages 
on the filter: 
 
examples: 
  
•  E measured in a calorimeter may be injected in the initial state of the backward filter 
as an estimator of q/p (if the matching and the sign q are inambiguous…) 

•  ΔE mesured as a γ energy in a calorimeter may be injected at an intermediate point or 
the trajectory (more delicate, but may be very useful for electrons…) 
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not everything is gaussian in real world… 

two kinds of “non-gaussianity”  
•   “short range” : e.g. measurement with uniform distribution in an interval  
       smoothed by convolution (gaussian limit for large numbers) 
•   “with long tails”: the gaussian limit may fail  
 
practically, for charged particles : 
 
- non-linearity in the propagation → distortion of the p.d.f. 
-  multiple sattering : low probability of a diffusion at large angle (à la Rutherford) 
-  energy loss:  
    . ΔE through ionisation is almost déterministic, with small fluctuations 
    . more violent occurrences : δ-rays, and above all  bremstrahlung (major problem for 
electrons) 
 
If the gaussian approximation fails, what to do ? 
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God’s algorithm



But : “On trouve avec le Ciel des accommodements” (Tartuffe) 

5-vector p to describe the state of the particle on a surface 
  
chaining elementary operations on the p.d.f. F(p) : 
 
•  measurement (local) : multiplication by fmeas(m(p)) 
 
•  noise (local) : convolution with fnoise(p) 
 
•  propagation : changement of variables F(p) → Fpr(ppr(p)): 
 
obvious difficulty: computing power needed  for functions in a 5D space! 
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the gaussian sum


principle: approximation of F(p) , fmeas et fnoise by a sum of gaussian functions 

F(p) = Σ αi Gi (p)   with   Gi(p) = Ci exp(- (p-pi)
t Wi (p-pi) / 2) 

•  works well in many cases for fmeas et fnoise (function of 1 variable) 
•  F is defined and positive everywhere if  all αI > 0, and it vanishes at infinity 
•  the operations (product, convolution, linear propagation) are easy and give again a 
sum of gaussians 
    product : (p1,W1)×(p2,W2) = ((W1+W2)-1(W1p1+W2p2 ) , W1+W2)  
    convolution : (p1,W1)*(p2,W2) = (p1+p2 , (W1

-1+W2
-1)-1) 

 

But : the number of components increases multiplicatively 
possible remedies: 
-  suppress components of low amplitude 
-  merge nearby components into one 
→  to be optimized for each case, depending on the final impact on 

physics results 
in practice: used mainly for electron trajectories 
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propagation: the Runge-Kutta integration method



solved by steps h in t 

1 step 
order 4 

steps along z axis in a magnetic field


RK applied to the state vector (x, y, tx, ty) 

dx

dz

= t
x

dy

dz

= t
y

dt

x

dz

= c
q

p

q
1 + t2

x

+ t2
y

�
t
x

t
y

B
x

� (1 + t2
x

)B
y

+ t
y

B
z

�

dt

y

dz

= c
q

p

q
1 + t2

x

+ t2
y

�
(1 + t2

y

)B
x

� t
x

t
y

B
y

� t
x

B
z

�

1

z axis 

generic problem: 
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parameterized propagation


idea: instead of using RK extrapolation for every track, precompute formulae to get a faster execution 
principle: 
-  chose a few reference surfaces that will contain « nodes » of the Kalman Filter.  
-  to go from the initial surface Σi to the final one Σf , express the state vector Sf on Σf through 

analytical of tabulated  functions of the components of the state vector Si on Σi 
 
guiding criteria 
-  at infinite momentum, the trajectory is a straight line 
-  so, we can try an expansion in powers of q/p of ΔSf , the difference between Sf and the straight line 

extrapolation 
-  the precision should be small compared to the other sources of error (mainly multiple scattering) 
-  the phase space may be reduced for trajectories close to the origin (particles for physics analysis) 
 
first example in the « endcap » description (x, y, tx, ty, q/p at fixed z): propagate from  zi=0 to zf 
- tx and ty are bounded by the acceptance ; 
- xi and yi are small, so terms at first order in xi,yi are sufficient 
 
 
 
 
 
 

0 
zf xi 

xf 

txi 

txf aim: express xf , yf , txf , tyf , as functions of  xi , yi , txi , tyi , q/p  
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byproducts


•   jacobian matrix D: straightforward derivatives w.r.t. xi, yi, q/p , easy for txi, tyi 
 
•  reverse propagation with the Newton-Raphson method: 
      starting from Sf , we want to find Si such that Si!Sf  
      if  Si

0 is a good approximation, and  Si
0!Sf

0, then Sf  ≈ Sf
0 + D.(Si−Si

0) 
      so Si  ≈ Si

0 − D−1. (Sf−Sf
0) 

      that is: we just need a direct propagation + a linear transform 
      if needed: iterate (the convergence is very fast) 
 
•  propagation from zi to zf with zi ≠ 0: zi ! 0 then 0 ! zf 

       jacobian matrix Dif = D0f
−1.Di0 

 
possible implementation: choose a few « main surfaces » for the full formulae and complement  
by short range extrapolation (1 step of RK or simpler local parameterization) 

 
this gives 4 expansions (for xf . xf  , txf , txf ), assuming p to be constant, e.g. for xf : 
 
 
 
the coefficients A,B,C may be tabulated or expressed as analytic functions of txi , tyi  

explicit formulae 

x0 
x1 
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application to LHCb (from TT to T1, 5 m through the magnet)


extrapolation errors (mm) 

central region (|ty| < 0.2) upper region (ty > 0.2) lower region (ty < −0.2) 

x 

y 

tx 

ty 

mult. scat. + meas. errors 
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vertexing���
pattern recognition



beam line 

extrapolated tracks 

•  find seeds for primary vertices (e.g. clusters in z of closest approach) 
•  detect short lived decays to build secondary vertices (tracks with 

significant impact parameter) 
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the “perigee” parameters (here: barrel coordinates)



Advantages : 
•  smooth propagation from the fitted track param. to the perigee param. (the jacobian  matrix D has no 
singularity with the consistent sign convention on rp and q/R) 
•  short distance between perigee and vertex : linear approximation is valid; it may be used for any short 
lived decay. That is: the perigee params (and their covariance matrix) can be computed once. 
•  the perigee params have a physical meaning 

direction φp 

beam 

distance rp (signed) 

curvature 1/R (signed) 

xy projection (beam along z axis)



to complete the 3D  description:  zp , θp 

P 

if  B is along z axis: 
x = −rP sin φp+ s cos φp [- s2/2R sin φp] 
y =   rP cos φp+ s sin φp [+s2/2R cos φp]  
z = zP + s cot θp 
(with s = signed distance from P in xy projection) 
 
sign convention: rP > 0 if the track passes at the left 
of the origin 
(terms […] are negligible in general)  

O

idea: extrapolate the full track information at a point close to the vertex 
! the next operations will be local 
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“simple” vertexing���
fitting vertex position



around an approximate position of the vertex: 
each track is extrapolated as a « tube » of error  
choosing an arbitrary position zi :    
-  center xi,yi , weight matrix W (rank 2) 
-  axis direction defined by tx , ty 
 
defining 3-vectors  ri = (xiyizi ) , V = (X,Y, Z) 
the minimum  of  χ2 = Σ (V−ri)t Wi (V−ri) 
gives the fitted position X,Y,Z of the vertex 
(combination of the tubes) 

local approximation (neglecting the 
divergence of the tube) 
at z = z0: position x0,y0 with a 2x2 
covariance matrix c = w−1 

the tube may be defined by the point 
x0,y0,z0 with a weight matrix W 
Wxx =  wxy 
Wxy =  wxy 
Wyy =  wyy 
Wxz = −txwxx 
Wyz = −tywyy 
Wzz =  tx

2 wxx+ ty
2 wyy+2txtywxy
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the full vertex fit



first trial: fit the position as before, and introduce this point as an additional 
measurement to all tracks.  
not optimal: this position is correlated to the other measurements on the track 
 
second trial: iterative procedure: adjust alternatively the vertex position and the pi 
(3-momenta of the particles at the vertex) to fit the extrapolations to qi 
possible but the convergence may be slow (zig-zag path) 

aim: use the convergence of trajectories to improve their reonstruction 
(add a virtual measurement and increase the lever arm) 

state (position, direction, momentum) 
as given by the track fit: 
5-vector q + 5x5 covariance matrix 

vertex position + one 
3-vector p per particle 
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the vertex fit as a hierarchical fit


    
“all in one” method: from a sample of n trajectoires (qi ,Wi) at initial point (5n parameters) fit 
simultaneously 3n+3 parameters with the constraint of convergence: 
•  the position V(X,Y,Z) of a common origin 
•  the 3-momenta pi of the particles at this point (or equivalently q/pi , θi , φI ) 
   tool : propagation function  q = F(V, p) from vertex to initial point (simple if the initial point is 
close to the vertex, e.g. the perigee) 

formulation with a global  χ2 : 
find V and the pi which minimize 
χ2 = Σ  (qi

mes - F(V, pi))t Wi (qi
mes - F(V, pi)) 

 
a priori : problem in a space of dimension 3n+3 
actually : hierarchical problem: 3 global param. + 3 particular param. for each track  
min (χ2)  =  min|V [Σ  min|pi (qi

mes - F(V, pi))t Wi (qi
mes - F(V, pi))] 

the “internal” et “external” minimizations have dimension 3 
 
Note: the “nesting” remains valid without the gaussian approximation 
that is: you can use e.g. Minuit with a fcn which itself calls n times Minuit (it 
works actually !) 
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 other example of “hierarchical” fit (1)



sample of signals  of the same shape, but with different amplitudes and dates : 
 S(t) = Aif(t-ai) ; each one is measured at n times tk → Sik

mes = Aikf(tk-ai) + εmes
 

the shape is defined by global parameters p1, p2, … to be fitted 
  
e.g. here  f(t) =  0 for t < 0 ,  exp(-p1t) - exp(-p2t)  for t > 0  

how to extract p1 and p2 from these measured signals ? 
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 other example of “hierarchical” fit (2)



a set of events from the Surface Detector of AUGER (atmospheric showers) 
signal in a tank at distance ri from shower axis: Si = Ai f(ri) 
- global parameters p,q for the shape, for example: f(r) = 1/rp(r+r1)q 

- individual parameters for each event: position (xi,yi) of the core, amplitude Ai 

how to fit p,q from such data ? 
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linearization


if  V ≈ V0 (vertex) and  pi ≈ pi0 (for every track) : 
qi = Fi(V, pi) ≈ qi0 + Di.(V-V0) + Ei.(pi-pi0)   (short range propagation) 
Ei et Di : (5×3) matrices, simple to compute if qi is at the perigee 
 
setting  Δqi = qi

meas - qi0 , on can fit δV = V-V0 and the δpi = pi-pi0  to minimize 
       χ2 = Σ (Δqi - Di δV- Ei δpi)t Wi (Δqi - Di δV- Ei δpi) 
 
•  one block of 3 equations on the full set of parameters:  
A δV +  Σ Bi δpi = T   (1)    with   A = Σ Di

t WiDi  , Bi = Di
t WiEi  , T = Σ Di

t Wi Δqi  
•  n blocks de 3 equations on V and one pi : 
Bi

t δV +   Ci δpi = Ui     (2)   with    Ci = Ei
t WiEi  , U = Σ Ei

t Wi Δqi  
 
   A     B1    B2   B3   …          Bn       δV           T 
   B1

t   C1      0     …               0        δp1             U1 
   B2

t    0    C2     0     …         0        δp2     =    U2                    
   B3t    0     0    C3       0  … 0        δp3        U3 
   …            …                     …        …          … 
   Bn

t     0    …                      Cn          δpn            Un 
 
 (sparse system by blocks 3x3) 
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resolution of the linear system



  from equations (2) one can express the δpi as functions of  δV 
             δpi = Ci

-1 (Ui - Bi
t δV)              (3) 

  injecting these expressions in (1) one obtains an equation in δV only 
         (A - Σ Bi Ci

-1 Bi
t ) δV = T -  Σ Bi Ci

-1 Ui              (4) 
 
  (4) gives δV then each of the equations (3) gives δpi  

  as a bonus, we obtain also the full (3n+3)×(3n+3) covariance matrix … 
       cov(V,V) = (A - Σ Bi Ci

-1 Bi
t )-1 

       cov(V,pi) =  - cov(V,V) Bi Ci
-1 

           cov(pi,pj) = δij Ci
-1 + Ci

-1 Bi
t cov(V,V) Bj Cj

-1 

 
note that this procedure introduces correlations between the 3-momenta of all 
particles in the vertex, to be used in principle in the physics analysis … 
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flexibility���
(adding or removing one particle)



to add a track (fitted as qn+1, Wn+1): 
•  add a triplet of parameters δpn+1 
•  add in (1)  Dn+1

t Wn+1Dn+1 to  A ,  and one term Bn+1 = Dn+1
t Wn+1En+1  

•  add in (2) one block of equations Bn+1
t δV +  Cn+1 δpn+1 = Un+1 

 
 taking as starting values the result of the fit with n particles (V0, pi0 for i=1…n): 
(A+An+1) δV +  Σ Bi δpi = Tn+1 
Bi

t δV +   Ci δpi = 0  for i=1…n 
Bn+1

t δV +   Cn+1 δpn+1 = Un+1 
resolution: 
(A - Σ Bi Ci

-1 Bi
t +An+1 - Bn+1 Cn+1

-1 Bn+1
t )      δV = Tn+1 -  Bn+1 Cn+1

-1 Un+1 
only the terms in red are computed : fast procedure → many combinations may be tried  
 
removing a track = adding it with a weight −Wi 
 
Remark : the beam may be considered as a track to be added in a primary 
vertex (in general: very precise measurement of x,y, but z is undefined)
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vertex fit with constraint(s)


examples: 
- prompt or distant  decay (neutral → +−)  with mass hypothesis  
- γ→ e+e− with parallel tracks at the decay point;  
in both cases:  p points towards the main vertex (or just the beam line) 
- more generally: combination of kinematical and geometrical constraints 

Lagrange multipliers: universal tool  
min|p (F(p)) with the constraint C(p) = 0  ⇔ min|p,λ (F(p) + λC(p))  
 
easy to solve in the following approximation around the minimum (or maximum) : 
•  the χ2 or the log-likelihood is a quadratic function of the variations of parameters 
•  the constraint is linear 
linear system → p as a function of λ , then elimination of λ with a linear equation  
 
generalisation to several constraints: 
min|p,λ1,λ2,… (F(p) + λ1C1(p) + λ2C2(p) + …) 
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applying constraints to a decay tree���
unseen region: indirect reconstruction



extrapolated trajectories 

« standard » secondary vertex primary vertex 
mass mass 

recovered vertex 

benefits:  
-  better reconstruction of 3-momenta and lifetimes ! better precision on physics results 
-  resolution of ambiguities on the topology of the event, if any 
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summary for track and vertex fit 
•  one can build a track fitting procedure by linking elementary operations on the local 
parameters trajectory (adding one measurement, adding one noise, propagation)





•  when putting these operations in order, each step uses independent inputs



•  in the linear approximation (almost always valid in useful cases), the steps are simple 
manipulations of 5-vectors and (5x5) matrices



•  in the gaussian approximation one can define quality tests in terms of Prob(chi2), either for 
the global fit, or for a given point (detection of outliers)





•  exogenous measurements may be injected at some steps (e.g. detectable energy losses)



•  if needed, some non gaussian effects may be taken into account (esp. for electrons) 



•  the track fit may be coupled to the pattern recognition to refine prediction to a layer (a 
large variety de strategies are possible)



•  the vertex fit may be achieved in a fast procedure (CPU time proportional to the number 
of tracks) with flexibility (adding or removing a track is easy)





•  geometrical and physical constraints may be added to improve the final reconstruction: 
invariant masses, combination of connected vertices in a decay tree 
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procedures of alignment



detector = assembly of elements supposed to be rigid 
geometrical degrees of freedom for each element: 
 translation, rotation; expansion, contraction ? 
 
first order: position of frames (« hardware » sensors) 
second order: fine corrections (position of sensitive elements)  
 using  signals from  tracks (beam, cosmics, collision data)    

calibration


determine shape of signals, biases, measurement errors 
- simulation 
- external inputs (beam, cosmics, point sources, pulses 
on elements of the electronic chain)  
-  internal   
-  with or without B field 
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1. beam + external hodoscope



module to be internally aligned 

very precise measurement of position 

the module should be moveable: impossible for big detectors  

beam 
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2. cosmic rays



mainly vertical (esp. in underground places)  ;  random impact position 

may connect different modules of a big detector 
no hodoscope !  weak modes may exist   



2021/11/26 GDR InF - tracking 53 

3. internal track sample



large statistics,  real time data, but useful tracks come mainly from origin 

momentum dependent: again weak modes 
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just for fun



when using a sample of tracks to make an alignment, you have to adjust: 
-  a few global parameters (the geometrical ones you want to obtain) 
-  individual parameters for each track (position, direction + curvature if magnetic field) 

this is again a hierachical fit !
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examples of « weak modes » 


in an internal geometric alignment



translation of all planes by a linear function of z: 
•  if no curvature: exactly compensated by a 

change of slope 
•  if curvature: compensated at first order 

for a sample of divergent tracks 
a small rotation is equivalent (in average) to a 
translation along the other axis 
some combination of them is weakly 
constrained





examples of correlation between alignment and field map
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in a field mainly along y axis: 
positive/negative particles get in average 
negative/positive x, tx: the x>0 and x<0 have 
opposite average charge populations   
  
 
•   a positive δBz pushes both signs upwards 
 partially compensated by pushing a z-plane 
downwards (negative Δy) 
 
 
•  an increase of  |By| increases the divergence 
partially compensated by pushing a z-plane 
towards negative z 
if separate alignment of x-sides: pushing them in 
opposite directions 
 
an alignment by tracks may give different results 
depending on the range of momenta
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perspectives for the future



active development in various fields: 
 
•  machine learning 
 
•  real time reconstruction: parallel/local computation 
 
•  use timing information (progresses in hardware)  
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backup





a problem of precision (LHCb) 

trying to implement the Kalman Filter included in PrPixelTracking (Velo) 
in single precision on a GPU:  
 
•  discrepancies between the GPU and the CPU results, and between them and the 

weight/information algorithm, when applied to the same data 
 
•  more precisely: the discrepancies (on fitted position/slope, covariance matrix, 

chi2)  decrease with the number of points in the track 
 
•   agreement between all versions in double precision, and between single and 

double with the weight formalism 
 
•  the discrepancies increase with the initial value given to cov(Tx,Tx) and 

cov(Ty,Ty) at the beginning of the loop over points  
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origin and solution of the problem 

at first point Cxx= σ2, CTxTx= Big 
    (in this code: Big = 1) 
the loop (pred, upd, noise) begins 
at the second point with a nearly 
singular predicted covariance : 
C’ xx= σ2+Big2Δz2 
C’ xTx= Big Δz  , C’TxTx= Big 
the « gain » business mixes Big and 
real quantities ! rounding errors ! 
 
here: making Big ! ∞ in the results 
after updating at point 2: 
x = x2          Tx = (x2-x1)/Δz 
cov = (σ2, σ2/Δz, 2σ2/Δz2) 
χ2 = 0 
 the KF machinery was useless in the 
first step ! 

conclusion: do not rely blindly on black boxes


put your eyes inside, and put your hands if needed  
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