November 2021 https://indico.in2p3.fr/event/25006/

<u>Beyond detectors:</u> lecture on Tracking algorithms by P.Billoir

Jerome Baudot

Reminders from lecture 1

• Semi-conductor based sensors for individual, thin & inner layers

J. Baudot - Tracking detectors 2/2 - GdR Intensity Frontier lecture, November 2021

Outline of lecture 2

- → Generalities about resolution
- \rightarrow Large gas volume detectors
- → Micropattern gas chambers
- → Scintillators for tracking
- \rightarrow Silicon detectors
- → Nuclear Emulsions

Resolutions

- \rightarrow Signals & electrode segmentation
- → Segmentation & position resolution
- → Timing

Charged particles...why?

- Tracking single particles required (at least) two points
 - Prevents detection after which particle is gone

Neutrals?

- Neutral hadrons detected through strong interaction => vanish after first point
- Photons disappear after photo-electric effect or pair-creation or trajectory severely impacted after Compton scattering

Ionization process ideal

- Low energy loss: for MIP (p ~1 GeV) in 300 μ m Silicon: Δ E ~ 100 keV, much less in gas
- Many points authorised
- Quite democratic, ~independent of particle type
- BUT electromagnetic process => only for charged particles

Scintillation works as well

• Detects also neutrals ... but still on shot (stopped or transformed)

Segmentation and signal formation

- Basic signal formation with ionization:
 - key parameters for initial nb of primary charges
- Wi = average energy for charge pair generation F = fano factor (<1) => variance_{#charges} = F <#charges>
- Schockley-Ramo theorem: current on electrode INDUCED by charge movement => electric field required Inside sensors
- Collection and segmentation?
 - $E_W(\vec{r})$ = field associated to ONE electrode at a position \vec{r}
 - obtained with: THIS electrode has potential=1, all other electrodes have potential 0
 - Current generated on THIS electrode for particle at \vec{r} and with velocity $v(\vec{r})$

$$i(\vec{r}) = q E_W(\vec{r}) \vee (\vec{r})$$

- Many charges generated by one particle
- BUT their collection are shared among electrodes
- => each electrode collecting some charges and has some signal!

Spatial resolution

Position measurement comes from segmentation

• Pitch = segment size

Spatial resolution – additional effects

Incident angle

•

- In real life, particles seldomly cross 1 sensor
 => charge sharing increases with angle
- Beneficial for low angle
 - when sharing still depends on distance (segment-hit)

• Systematic effect => measurable and correctible

- @ large angle, sharing is homogeneous over segments
 - change of algorithm compensates sligthly

A necessary trouble maker

induces pseudo charge-sharing

Lorentz force from magnetic field B

particle track

Timing

- Various ways to qualify timing performance
 - Integration time => Hit rate, potential bottleneck at data taking
 - Time resolution => Track finder step

<u>Time resolution for single layer</u>

• Here from the silicon point of view (but silimar for thin gas detectors)

Large gas volume detectors

→ Drift chambers

 \rightarrow Time projection chambers

Short reminder on gas-based detectors

Ionization

- Rather large W_i 20-40 eV combined with low density (gas). => primary nb of charges low
 => amplification is needed for good SNR!
- Due to additional non-ionizing energy loss (e.g. light) => smart gas admixture
- <u>Velocity-mobility</u> $v_{drift} = \mu \frac{E}{P}$
 - μ is the mobility (P the pressure) => very different for e- and ions !
 - Typical v_{drift} (e-) > 10 cm/µs
 - Signal time characteristic quite different for e- and ions
- Amplification
 - With avalanche when large field (E>106 V/m)

Drift chambers

Basic principle

- Alternate field and anode wires - Generate a drift
- Pressurize gas to increase charge velocity (few atm)
- 3D detector
 - 2D from wire position
 - 1D from charge sharing at both ends

Spatial Resolution

- Related to drift path
- Typically 100-200 μm

Belle II drift Chamber

Remarks

- Could not go to very small radius
 - Mechanical precision for wires too difficult
 - Hit rate limitation due to charge density generated
- Aging process on wires (unwanted insulating layer)

 $\sigma \propto \sqrt{\text{drift length}}$

Time Projection Chambers - concept

Benefits

- Large volume available
- Multi-task: tracking + Part. Identification

Basic operation principle

- Gas ionization \rightarrow charges
- Electric field \rightarrow charge drift along straight path
- Information collected
 - 2D position of charges at end-cap
 - 3rd dimension from drift time
 - Energy deposited from #charges
- Different shapes:
 - rectangles (ICARUS)
 - Cylinders (colliders)
 - Volumes can be small or very large

Time Projection Chambers 2/2

End cap readout

- Gas proportional counters
 - Wires+pads (old days)
 - GEM, Micromegas (see later): for

Performances

- Two-track resolution ~ 1cm
- Transverse spatial resolution ~ 100 200 μm
- Longitudinal spatial resolution ~0.2 1 mm
- Longitudinal drift velocity: 5 to 7 cm/µs
 ALICE TPC (5m long): 92 µs drift time
- Pro
 - Nice continuously spaced points along trajectory
 - Minimal multiple scattering (inside the vessel)
- Cons
 - Limiting usage with respect to collision rate
 - Could not go to very small radius

Micropattern gas chambers

→ Gas electron multiplier

→ Micromegas

→ Resistive plate chamber

Wire chambers "advanced"

Wire chambers "advanced"

Resistive Plate Chamber

• Getting to large planar area & being very fast

Principle

- Electrodes = highly resistive material
 - Insulator => potential built up by static charge accumulation
 - Easy to built over many m²
- Small distance
 - large field => avalanche
 - fast collection => time resolution << ns

• Used in CMS, COMET, ...

Silicon detectors

- \rightarrow Detection in semiconductors
- \rightarrow Strip detectors
- \rightarrow (Hybrid) Pixel detectors
- → Monolithic pixels: DEPFET / CMOS / SOI
- →Low gain avalanche detectors

Detection in semiconductors

Ionization is large

- Small $W_{\rm i}$ range from 3 to 15 eV
- Signal for MIP in 300 μm Silicon ~25000 e-

<u>2 conditions to operate a solid as a ionization detector</u>

- Induced current (Shockley-Ramo) => cannot be insulator
- Minimal noise => cannot be a conductor (huge I_{leak})

Depletion via junction reverse bias

- charge mobility granted: $v = \mu E > few cm/\mu s$ (μ =mobility)
 - Drift time over 300 μm Silicon ~ few 10 ns
- Leakage current small enough: typically < μ A
- Reminder on depleted depth

For

- Makes the sensitive volume (charge lifetime ${\sim}100~\mu s)$
- Driven by bias voltage (V) and resistivity (p)

planar P-N junction:
$$d_{e/h} = \sqrt{2\mu\epsilon V\rho} = \sqrt{\frac{2\epsilon V}{e n_{e/h}}}$$

Solution = semiconductor with depleted P-N junction

Benefits from semi-conductor industry:

- Small details can be etched
 => excellent spatial granularity
- Continuous R&D

Radiation effects in silicon sensors

Non-ionizing energy loss

- Damage crystal network
 - -Generates higher leakage current (noise)
 - -Generates charge traps (lower signal)
- Modifies doping
 - -Harder depletion (requires higher V_{bias})

- Cumulated ionizing dose
 - Parasitic charges trapped at interface with oxides
 - -Released randomly \Rightarrow Noise !
 - Effect is temperature dependent -Mitigation by sub-0 cooling

Silicon is spreading

Silicon strip detectors

Concept

- Pattern P-N junction strips as collection electrodes
- Connects each strip to a read-out channel (Integrated circuit) • - Floating strip every 2 strips
- Pitch from 25 µm to 100 µm
 - Spatial resolution down to ~3 µm possible
- Full depletion (10 to 0.5 kV) over depth of few 100 μm - Usual depth 300-500 µm, 100 µm challenging / SNR
- Single detector area up to ~10x20 cm²
 - Rectangular or trapezoidal shapes
- 1D if single sided
- Pseudo-2D if double-sided

Pre-amplifiers/ Particle Shapers Metalisation Implant, p+-type SiQ Strip pitch, P Implant width, W 300um) holes typ. Bulk, n-type electrons . Backplane, n^+ - type silicon $\stackrel{\circ}{+}$ Bias Voltage 1D – single-sided front-end ionising

Stoppers

Silicon hybrid-pixel detectors

Concept

- Strips → pixels on sensor for real 2D
 Large gain in hit-rate capability (>100 MHz/cm²)
- One to one connection from electronic channels to pixels => bump bonding
- Pitch size limited by physical connection and transistor density in read-out pixels

– minimal (today): 25x25 μm^2 / typical: 50x50 to 100x150/400 μm^2

25 um solder bum

Silicon hybrid-pixel detectors

Institut Pluridisciplinaire Hubert CURIEN STRABOURG

Concept

- Strips → pixels on sensor for real 2D
 Large gain in hit-rate capability (>100 MHz/cm²)
- One to one connection from electronic channels to pixels => bump bonding
- Pitch size limited by physical connection and transistor density in read-out pixels
 - 50x50 to 100x150/400 μm^2

Performance highlight

- Excellent radiation tolerance >> $10^{15} n_{eq(1 \text{ MeV})}/cm^2$
 - Only technology surviving LHC innermost layers environment
 - Strong development in sensor techno, 3D-technology
- Timing resolution easily in the ns range
 - NA62 GigaTracker reached ~200 ps
- Material budget
 - Minimal(today): 100(sensor)+100(elec.) µm
- Power budget: ~10 µW/pixel
 - Require very active cooling strategy

µChannel cooling # -20°C

Monolithic pixel sensors

Rationale

- Limitations of hybrid-pixel sensors
 - material budget of sensor+read-out exceeds ~200 µm Siequivalent
 - Very challenging to get pixels below 50 μm
- Can we combine sensitive layer and read-out layer?
 => going monolithic

Various solutions

- Historic CCD (applied in SLD/SLC)
- CMOS (MAPS)
 - Developed since ~20 years
 - Applied since 2014 STAR, then ALICE, MU3e, ...
- SOI
 - Developed mainly in Japan for spectroscopic application ,
 - R&D toward ILC and Belle II vertex detector

MPAS 2x2 submatrix view thickness ~50 µm

Fully produced in industry

• DEPFET

- R&D and sensor production in Münich
- Not fully industrialized
- Running in Belle II since 2019

STAR-PXL half-detector

First MAPS detector (2014)

CMOS pixel sensors

Concept

- Same technology as integrated circuit
 - with so-called low-doped epitaxial layer = sensitive volume
 - Read-out circuitry inside pixel (limitation / pixel size)
- Benefit to
 - granularity: pixel pitch down to ~10 μm
 - Total thickness easily down to 50 μm

Performance highlight

- Pixel pitch in range 10-100 µm
- Other performances correlated to pitch
- Approach hybrid-pixel for pitch > 30 μ m
- Reach unique granularity-material budget 3-4 µm resolution with budget ~0.1 % X0
- R&D very active // industry push
 - Ex: ALICE-ITS2 ~2026
 - $30x10 \text{ cm}^2$ sensor thinned to $\sim 30 \ \mu\text{m}$
 - Ex: FASTpix R&D for ~100 ps time resolution

tolerance J. Baudot - Tracking detectors 2/2 - GdR Intensity Frontier lecture, November 2021

=>

Position resolution from MAPS

MAINLY from the MIMOSA series designed in Strasbourg with thin non-depleted sensitive layers

- Position derived from charge centroid
 - charge = 1 for binary output
- Resolution here = standard deviation of residuals = true – reconstructed pos.
 - For imaging ~ stdev of PSF

Key parameters

- Pixel pitch
- Charge digit precision
- Threshold for fired pixel detection
- Charge sharing, driven by $\sqrt{2D \frac{\text{distance}}{\text{velocity}}}$
 - Sensitive thickness (distance)
 - Level of depletion (velocity & distance)

Other active pixel sensors

• Depleted p-channel FET

- Fully depleted sensitive layer
- Large amplification
- Still require some read-out circuits
 - -Not fully monolithic
 - -Possibly limited in read-out speed

Silicon On Insulator (SOI)

- Fully depleted sensitive layer
- Fully monolithic
- Electronics similar to MAPS
- DuTIP R&D for Belle II
 - 40 µm pitch for 60 ns time resolution low power expected
- SOIPix R&D for ILC
 - 20 μm pitch for ~1 μm resolution

<u>Goal</u>

N.Cartiglia, INFN

From 1

• Reach time resolution ~10 ps range, still with some segmentation < 100 μ m

– Ultimately combine 1 µm with 1 ps !!

- LGAD chosen by ATLAS & CMS for current upgrade
- Connected technology: SPADS (basic elements of SiPM)
 - Still suffer large dark count (temperature)

30

Comparison WF2 Simulation - Data Band bars show variation with temperature (T = -20C - 20C), and gain (G = 20 -30)

Scintillators for tracking

\rightarrow	

The example of the LHCb SciFi

Concept

• Stack thin layers of scintillators (here fibers with 250 μ m diameter) = 1 basic element

- Read at one (or both) ends with photosensors (here Silicon PhotoMultipliers)
- Combine basic elements, possibly with different fiber orientation (2D sensitivity)
- Spatial resolution < 100 μm for material budget <1 % X_0
- Fast read-out @ 40 MHz

Benefits

- Cost effective technology (materials and nb of channels) for large area (340 m²)
- Similar (but less precise) concept employed in OPERA target tracker (and JUNO)

Missing & Wrap-up

Missing in this discussion

Some detector technologies

- Silicon drift detectors
 - Real 2D detectors made of strips
 - 1D is given by drift time
 - Rather complex to operate
- Diamond detectors
 - Very interesting for radiation tolerance
 - Comes in limited area

- Scintillators
- equip hybrid pixel detectors when suited
- Nuclear emulsion
 - Most precise ever < 1 μ m
 - No timing information!
 - Requires long off-line image scan

Extremely fast (100 ps)

Could be arranged like

)es

thick ($X_0 \sim 2$

- Sensors are not alone
 - Read-out electronics
 - Mechanical support
 - Cooling
 - Magnets!

 \cap

Conclusion on technologies

<u>Trend</u>

- Faster collision rates and higher particle multiplicities favour
 - -Fast silicon sensors and micro-pattern gas chambers
 - -Pixelization (and miniaturisation)
- Still large gas volume suited for e+e- collider (Bellell, ILC, FCCee)
- If affordable (complexity) combining various technologies is very beneficial

THANK Of the sectors of the sectors

Additional slides

Magnets

Solenoid

- Field depends on current I, length L, # turns N – on the axis $B = \frac{\mu_0 NI}{\sqrt{L^2 + 4R^2}}$
 - Typically: 1 T needs 4 to 8 kA
 - ➤ superconducting metal to limit heat
- Field uniformity needs flux return (iron structure)
 - Mapping is required for fitting (remember B(x)?)
 - Usually performed with numerical integration
- Calorimetry outside + limited material + superconducting
- Fringe field calls for compensation

Length

Energy

			(m)	(m)	(MJ)
Superconduction	ALICE	0.5	6		150
 cryo-operation + quenching possible ! 	ATLAS	2	2.5	5.3	700
 Magnetic field induces energy: 	CMS	4	5.9	12.5	2700
- Cold mass necessary to dissipate heat in case of quench	ILC	4	3.5	7.5	2000

 $E \propto B^2 R^2 L$

Field (T)

Radius

Mu3e – VTX concept

J. Baudot - Tracking detectors 2/2 - GdR Intensity Frontier lecture, November 2021

ALICE – ITS3 project

J. Baudot - Tracking detectors 2/2 - GdR Intensity Frontier lecture, November 2021

Bending sensors

Preparatory work

From https://indico.cern.ch/event/1071914/

