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Outline

Differentiable programming for HEP applications

● (formal) introduction to automatic differentiation

● Optimization use-cases: analysis optimization, detector design

● MODE collaboration

● Project example: differentiable programing for muography
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Disclaimer

“You know nothing, Jon Snow”
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Warm up: ML basics
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Machine Learning Basics

y(x,w) = t

Data

Output weights

Target
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Training Neural Networks

Data

(features x)

Objective

(target t)

y = f(x, W)

f : non-linear functions

W : parameters (weights)

Cost function
“how close is the network output 

to the objective ?”
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Training Neural Networks

Update of weights W

Data

(features x)

Objective

(target t)



Julien Donini – Differentiable programming and detector design optimization 9

Gradient descent

Gradient descent

Start from initial set of weights w and subtract gradient of    iteratively: 

k: iteration, η: learning speed

Repeat until convergence.

w
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w
2
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convergence
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Backpropagation in NN

Example: MLP network with 2 layers (1 hidden, 1 output)
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Differentiable programming

(2018)
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Differentiable programming

In practice: gradient-based optimization methods where the derivatives 
come from executing differential code via automatic differentiation   

automatic

differentiation

Higher order derivatives: 
Hessian matrix in Newton’s 
method

Gradient:

➔ Software composed of differentiable and parameterized building 
blocks, optimized via automatic differentiation
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Differentiable programming

“4 methods for the computation of derivatives in computer programs :

(1) manually working out derivatives and coding them; 

(2) numerical differentiation using finite difference approximations; 

(3) symbolic differentiation using expression manipulation in computer algebra 

(4) automatic differentiation, also called algorithmic differentiation”

Recommended reading: Automatic Differentiation in Machine Learning: a Survey
Baydin, Pearlmutter, Radul, Siskind. 2018. Journal of Machine Learning Research.

https://arxiv.org/abs/1502.05767 

https://arxiv.org/abs/1502.05767
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How to code derivatives ?

[1502.05767]

https://arxiv.org/abs/1502.05767
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Automatic differentiation

Automatic (algorithmic) differentiation (AD)

● Numerical derivative evaluations rather than derivative expressions

● Composition of operations for which derivatives are known (trace)

● No need to rearrange the code in a closed-form expression

● Accurate at machine precision 
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Automatic differentiation

[taken from G. Baydin]

Represented by a computational graph showing dependencies

Example:

https://indico.cern.ch/event/1022938/contributions/4487279/attachments/2303715/3918954/differentiable-programming-and-design-optimization%20%281%29.pdf
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Automatic differentiation

Represented by a computational graph showing dependencies

[taken from G. Baydin]

Example:

https://indico.cern.ch/event/1022938/contributions/4487279/attachments/2303715/3918954/differentiable-programming-and-design-optimization%20%281%29.pdf
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Automatic differentiation

Two main modes, both based on chain rule 

Associate each intermediate 
variable     with a derivative

Propagates derivatives 
backwards from output

Forward mode Reverse mode (backpropagation)

Apply chain rule to each elementary 
operations in Forward propagation

Best suited for 

Two phases 
1. Calculate intermediate variables

2. Calculate derivatives: output → input

Best suited for 

[figure G. Baydin]

https://indico.cern.ch/event/1022938/contributions/4487279/attachments/2303715/3918954/differentiable-programming-and-design-optimization%20%281%29.pdf
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Forward mode

Example

Forward mode example, evaluated at (x
1
, x

2
) = (2, 5) and setting            to compute 

[1502.05767]

2

5

Each intermediate 
variable is associated to

https://arxiv.org/abs/1502.05767
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Digression: dual numbers

Forward mode can be viewed as evaluating a function using dual numbers

Numbers defined as             where           and  

Properties (using Taylor expansion):

Composite function 
derivative !

In practice, implement specific code to handle the dual operations so that function 
f and its derivative are simultaneously computed (operator overloading)
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Reverse mode (backpropagation)

Example

Reverse mode example, evaluated at (x
1
, x

2
) = (2, 5). Both        and          are computed 

on the same reverse pass starting from the output 

[1502.05767]

2

5

Propagates derivatives 
backwards from output

https://arxiv.org/abs/1502.05767
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Current state of differentiable programming

[slide G. Baydin]Auto-diff tools: http://www.autodiff.org/ 

https://indico.cern.ch/event/1022938/contributions/4487279/attachments/2303715/3918954/differentiable-programming-and-design-optimization%20%281%29.pdf
http://www.autodiff.org/
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Differentiable programming in HEP

Differentiable programming in High Energy Physics, SnowMass 2021

Incorporating automatic differentiation in HEP software

Differentiable Programming in Analysis Code
● Optimize free parameters of an analysis with 

respect to the desired physics objective
● End-to-end differentiable analysis workflow

Differentiable Programming in Simulation Code
● Compute gradient for simulated samples with respect to parameters of simulation
● EFT, Cosmology, MadGraph (evaluation of matrix element using autodiff), ...

[figure N. Simpson]

https://www.snowmass21.org/docs/files/summaries/CompF/SNOWMASS21-CompF5_CompF3_Gordon_Watts-046.pdf
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Differentiable analysis: NEOS

[Slide Nathan Simpson]

End-to-end optimized analysis pipelines that use the analysis sensitivity 
including systematic uncertainties as the objective function

github.com/gradhep/neos

https://indico.cern.ch/event/1022938/contributions/4487419/attachments/2305587/3922485/MODE_Sept21_Nathan_simpson_e2e.pdf
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INFERNO

Inference Aware Neural Optimization
● Include nuisance parameters in the loss function and directly minimize 

variance of parameters of interest

Profiled likelihood around the expectation value for the parameter of interest 
for inference-aware models cross-entropy loss based models. 

[1806.04743, de Castro, Dorigo]

https://arxiv.org/abs/1806.04743
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INFERNO algorithm

[taken from 1806.04743]

https://arxiv.org/abs/1806.04743
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Optimization of detector design

Can automatic differentiation be applied to detector optimization ?
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Optimization of detector design

Design of detectors for particle physics applications traditionally relies on 
individual optimization of each subdetector
● Track first, destroy later 

● First detect ionization tracks in tracker, then measure energy deposits from 
destructive interaction with thick calorimeters

● Per-subdetector optimization
● subdetector-specific figures of merit (e.g. momentum resolution)

● Impact on physics goals typically considered in a second step

Optimization of a joint problem ≠ different from individual optimization
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Proof of concept: MUonE experiment
Example of geometry optimization: MUonE experiment
● MUonE: high precision muon-electron differential cross section 

→  hadronic contributions to g-2 muon anomaly

Optimizing geometry of the detector
● Likelihood minimization (not AD)
● Factor 2 improvement in FOM
● No increase of detector cost

 

[T. Dorigo, https://doi.org/10.1016/j.physo.2020.100022]
Relative resolution in q2 as a function 

of q2. The higher black line is the 
original proposal by the MUonE coll.

https://cds.cern.ch/record/2677471?ln=en
https://doi.org/10.1016/j.physo.2020.100022
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Generic optimization pipeline
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Generic optimization pipeline

Data 
(particles)

...  Parameters of interest

Differentiable simulated 
detector modules

Data NN output 

Minimization of objective function through automatic differentiation
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Generic optimization pipeline

Data 
(particles)

...  Parameters of interest

Differentiable simulated 
detector modules

What if simulator is not differentiable ? Try generative surrogate

Black-Box Optimization with Local Generative Surrogates, S. Shirobokov, V. Belavin, 
M. Kagan, A. Ustyuzhanin, A. G. Baydin, https://arxiv.org/abs/2002.04632 

https://arxiv.org/abs/2002.04632
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Muon shielding in SHIP
Minimize muon background fluxes in the SHIP steel magnet by varying its geometry

 

Local generative surrogate solution is shorter and has lower mass than other 
proposal, hence improving efficacity of the experiment and reducing its cost

Geometry of the magnet  
42 parameters to optimize

Evolution of 6 parameters 
during optimization

[2002.04632]

https://ship.web.cern.ch/
https://arxiv.org/abs/2002.04632


Machine-Learning Optimized 
Design of Experiments

MODE Collaboration 
https://mode-collaboration.github.io

A. G. Baydin5, A. Boldyrev4, K. Cranmer8, P. de Castro Manzano1, T. Dorigo1, C. 
Delaere2, D. Derkach4, J. Donini3, A. Giammanco2, J. Kieseler7, G. Louppe6, L. 
Layer1, P. Martinez Ruiz del Arbol9, F. Ratnikov4, G. Strong1, M. Tosi1, A. 
Ustyuzhanin4, P. Vischia2, H. Yarar1 + 8 members that joined recently

1 INFN, Sezione di Padova (and associates from Padova and Naples Universities), Italy
2 Université Catholique de Louvain, Belgium
3 Université Clermont Auvergne, France
4 Laboratory for big data analysis of the Higher School of Economics, Russia 
5 University of Oxford
6 Université de Liege
7 CERN
8 New York University
9 IFCA

https://mode-collaboration.github.io/
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MODE ultimate goals

The target of MODE is to design and offer to the community a scalable, versatile 
architecture that can provide end-to-end optimization of particle detectors, 
proving it on a number of different applications across different domains

[taken from T. Dorigo]
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MODE workshop(s)
Started series of workshop on automatic differentiation for experimental design
● 1st edition: 6–8 September 2021, Louvain-la-Neuve, 

https://indico.cern.ch/event/1022938/ 
● Sponsored by JENAA (Joint APPEC, ECFA and NuPECC) and IRIS-HEP
● 105 participants (one third of which present in person), about 30 talks

https://indico.cern.ch/event/1022938/
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Differentiable programming for muography

[images : A. Giammanco]

Tomography: exploit atmospheric muon flux to map the interior of objects  

Muon absorption Muon scattering

https://indico.cern.ch/event/1022938/sessions/407048/attachments/2305245/3921785/muography-mode-workshop2021-summary.pdf
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Muon tomography

Volume with unknown composition sandwiched between detectors

Infer X
0
 (radiation length) of volume by measuring muon scattering

How should detectors be positionned for best performances ?
● i.e Muon detection accuracy, resolution on X

0, ...

● But also: cost, size, ...
[see G. Strong talk]

https://indico.cern.ch/event/1022938/contributions/4487336/attachments/2304133/3919739/GSTD_ModeWS_06-09-21.pdf
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TomOpt: Tomography Optimization

“Simple” use-case : muon scan of volume of unknown density 

Still under development: code and results from Giles Strong

Promizing first results already achieved

Learnable XYZ & XY-span

Fixed res. & eff.

[G. Strong talk]

https://indico.cern.ch/event/1022938/contributions/4487336/attachments/2304133/3919739/GSTD_ModeWS_06-09-21.pdf
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TomOpt: Tomography Optimization

Example volume

• Block of lead (X
0
=0.005612m)

• Surrounded by beryllium (X
0
=0.3528m)

Prediction based on 100k muons

• 2h computation time

• Lead block clearly visible, but high z

uncertainty in scatter location causes

‘ghosting’ above and below

[G. Strong talk]

https://indico.cern.ch/event/1022938/contributions/4487336/attachments/2304133/3919739/GSTD_ModeWS_06-09-21.pdf
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TomOpt: Tomography Optimization

Loss function:

[G. Strong talk]

Still a long way to go, but an important milestone for this use case

https://indico.cern.ch/event/1022938/contributions/4487336/attachments/2304133/3919739/GSTD_ModeWS_06-09-21.pdf
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Conclusion

Differentiable programming paradigm opens to many different applications

For HEP: end-to-end optimization of analysis, simulators, detectors, ...

MODE collaboration: ML optimization of detector design
● Several projects: muon tomography (advanced), muon collider detector 

shielding (starting), Hybrid calorimeter (staring) + few others considered 
● We know this is a challenging and ambitious task !
● Objective is not to substitute experts in detector design
● Domain knowledge crucial in setting up analysis workflow
● Consider joining and bring you use case
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Backup material
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Surrogates for differentiability

[slides G. Baydin]

https://indico.cern.ch/event/1022938/contributions/4487279/attachments/2303715/3918954/differentiable-programming-and-design-optimization%20%281%29.pdf
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Surrogates for differentiability
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TomOpt: end-to-end optimization

[G. Strong talk]

https://indico.cern.ch/event/1022938/contributions/4487336/attachments/2304133/3919739/GSTD_ModeWS_06-09-21.pdf
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Muon radiography

Conceptual layout of an optimization pipeline for a muon 
radiography apparatus. Modules within the dashed black box 
inform the validation of a continuous model and are not part of 
the optimization flow

[G. Strong talk]

https://indico.cern.ch/event/1022938/contributions/4487336/attachments/2304133/3919739/GSTD_ModeWS_06-09-21.pdf
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Joining MODE ?

[slide T. Dorigo]
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