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Differentiable programming for HEP applications
* (formal) introduction to automatic differentiation
* Optimization use-cases: analysis optimization, detector design
* MODE collaboration

* Project example: differentiable programing for muography
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“You know nothing, Jon Snow”



Warm up: ML basics
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Machine Learning Basics

Data
weights

Output
™
y(x,w) =1t_

Target
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Training Neural Networks

Input Layer Hidden Layer Output Layer

Objective
(target t)

Data
(features x)

Output

y = f(x, W)

Cost function

“how close is the network output
to the objective ?”

{(y,t)

f : non-linear functions
W : parameters (weights)
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Training Neural Networks

Input Layer Hidden Layer Output Layer

Data Objective
(features x) ,, (target t)
Update of weights W
Ol(y,t)
W - W -7 Z W
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Gradient descent

Gradient descent

Start from initial set of weights w and subtract gradient of ¢ iteratively:

k: iteration, n: learning speed
Repeat until convergence.

6 —— Cost function
A start 05
0.4 4
:
U
0.3
0.2 4
\ 0 5000 10000 15000
convergence
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Backpropagation in NN

Example: MLP network with 2 layers (1 hidden, 1 output)

Input data .
X A Use chain rule to compute
} derivatives of the loss /(y,t)
L
S(l) — W(l)X + b(l) g
» I S - ol ot oy 0s?
§ X(l) = f(s(l)) % %:,r OW (2) ay 9s(2) AW (2)
s ! ) g’ _ otos <SE:))X<1>
E 52 — W®@x@) 4 p2) g F dy 0Os
"
(2) jf( (2)) § ot ot dy 0s® gx(M 9sM)
-0 8 oW (1) ay 0s(2) ox(1) 9s(1) oW (1)
¢ oL Of(s®) 9s@ af(s(l))x
\ y(x) =x? T ay 9@ ax( 9s™)

NN output
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Differentiable programming

ASA Andrej Karpathy @ »
s’ @karpathy

Gradient descent can write code better than
you. |I'm sorry.

3:56 PM - 4 Aug 2017

&8 Yann LeCun
January 5 - & (2018)

OK, Deep Learning has outlived its usefulness as a buzz-phrase.
Deep Learning est mort. Vive Differentiable Programming!




Differentiable programming

In practice: gradient-based optimization methods where the derivatives
come from executing differential code via automatic differentiation

' 0 0
fizeR" =R automatic Gradient: V[ = (8_f’ s 8_f>
differentiation L1 Tn

Higher order derivatives: —n/f{ f-lv F
Hessian matrix in Newton’s
method

=> Software composed of differentiable and parameterized building
blocks, optimized via automatic differentiation
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Differentiable programming

Recommended reading: Automatic Differentiation in Machine Learning: a Survey
Baydin, Pearimutter, Radul, Siskind. 2018. Journal of Machine Learning Research.
https://arxiv.org/abs/1502.05767

“4 methods for the computation of derivatives in computer programs :
(1) manually working out derivatives and coding them,
(2) numerical differentiation using finite difference approximations;
(3) symbolic differentiation using expression manipulation in computer algebra
(4) automatic differentiation, also called algorithmic differentiation”
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https://arxiv.org/abs/1502.05767

Zl =
Zn+l = 4Zn(1 = ln)

How to code derivatives ?

) .- Manual
f(z) =1y = 642(1 — x)(1 - 22)*(1 — 8x + 8x?) Differentiation
f(x):
v=x
fori=1to3
v = 4xyx(1 - v)
return v
or, in closed-form, .Symbc.)lic.
Differentiation

flx):
return 64*x*(1-x)* ((1-2%x)"2)

*(1-8*x+8*x*x) "2

Automatic Numerical
Differentiation Differentiation

95 (G2
(v,dv) = (x,1)
fori=1to3
(v,dv) = (4xvx(1-v), 4xdv-8xv*dv)
return (v,dv)

(o) = i zg)
Exact

of the Closed-form

f'(z) = 1282(1 — z)(—8 + 16x)(1 — 2x)3(1 —
8z +8z%)+64(1 —z)(1—2x)?(1 — 8z +82%)% —

64z(1 —2z)%(1 — 8z + 822)% — 2562(1 — z)(1 —
2z)(1 — 8z + 8z?)2

Coding

E )

return 128*x*(1 - x)* (-8 + 16%x)
*((1 - 2%x) "2)* (1 - 8%x + Bkx*kx)
+ 64*(1 — x)*((1 - 2%x)"2)*((1
- 8xx + 8kxkx) "2) - (64*x*(1 -
2%x)"2) % (1 - 8*x + 8*x*x) "2 -
256*x*x (1 - x)*(1 - 2*xx)*(1 - 8*xx
+ 8*x*kx) "2

2 (g =f'((xn)

Exact

A ()
h =0.000001
return (f(x+h) -f(x)) /h

£ (x0) = f'(z0)
Approximate
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Automatic differentiation

Automatic (algorithmic) differentiation (AD)

* Numerical derivative evaluations rather than derivative expressions
* Composition of operations for which derivatives are known (trace)

* No need to rearrange the code in a closed-form expression

* Accurate at machine precision
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Automatic differentiation

Example:
f(a, b):
fla,b) =log(ab) = c=a*b
d = log(c)
return d

Represented by a computational graph showing dependencies

primal
2 /
6
a c 1.791
3 « @ . d 1.791 = (2, 3)
b

[taken from G. Baydin]
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Automatic differentiation

Example:
f(a, b):
fla,b) =log(ab) = c=a*b
d = log(c)
return d

Represented by a computational graph showing dependencies

primal

2 7 1.791 = (2, 3)
g : 1.791 [0.5, 0.333] = f’(2, 3)
d Vfla,b)=(1/a,1/b)

3 0.166 1
b derivati
5. 333 erivative N

tangent, adjoint

”gradient" [taken from G. Baydin]
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Automatic differentiation

Two main modes, both based on chain rule

Forward mode

Primals
Derivatives

(Tangents)
Associate each intermediate _— ov;
variable v; with a derivative % — ox

Apply chain rule to each elementary
operations in Forward propagation

Best suited for f : R" — R, n < m

Reverse mode (backpropagation)

Primals >
< Derivatives

(Adjoints)

Propagates derivatives ~~ 9f
backwards from output Y ~ 5 -

2

Two phases
1. Calculate intermediate variables v;
2. Calculate derivatives: output — input

Best suited for f : R" — R, m < n

[figure G. Baydin]
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Forward mode

Example

y = f(z1,22) = In(z1) + 2122 — sin(zz)
flxy, x2)
Each intermediate ;. Ovi
variable is associatedto ' 0Oz

Forward Primal Trace Forward Tangent (Derivative) Trace
V1 =TI =2 ’fJ_l Iii?l —
Vo = T2 =5 Vo = Io —0
v :111’0_1 21112 ’fJ'l 21')_1/’{}_1 21/2
Va2 = U_1 X Vg =2 x5 Vg = VU_1XVo+VoXV_1 =1 x50 x 2
vz = sinwvg =sinb U3 = Vg X COSUp =) X cosb
T4 = U1 + U2 = 0693 + 10 1}4 = 1}1 a4F ’EJQ — 05 -|- 5
Vs = U4 — VU3 = 10693 + 0959 1:?5 = ’f)4 — ’f}3 — 55 — 0
Vy =uwus = 11.652 V g =uvs = 5.5
. . ) oy
Forward mode example, evaluated at (x,, x,) = (2, 5) and setting #; = 1to compute ¥ = e

[1502.05767]
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Digression: dual numbers

Forward mode can be viewed as evaluating a function using dual numbers

Numbers defined as v + ve where ¢ £ 0 and € =0

Properties (using Taylor expansion):
f(v+ve) = f(v) + f'(v)ve

f(g(v + ve)) = fg(v) + g'(v)ve))

= f(g(v)) H [ (g(v))g (v]ve Composite function
derivative !

In practice, implement specific code to handle the dual operations so that function
f and its derivative are simultaneously computed (operator overloading)

Julien Donini — Differentiable programming and detector design optimization 20



Reverse mode (backpropagation)

Example

y = f(z1,22) = In(z1) + 2122 — sin(zz)
f(z1,72)
Propagates derivatives oy

backwards from output "’ ~

Forward Primal Trace Reverse Adjoint (Derivative) Trace
V_1= 1 =2 A ABiL = 3l =855
Vo = T2 =5 T2 = Vo = 1Ll
v; =lnv_q =In2 V_1=V_1 +W1 6‘81::11 = G +51/U_1 =55
Vg =U_1 XUy =2XDH Uo Iﬁo—Fﬁz%% =Ug+v2 xv_1 =1.716
= 5288;’_21 = V2 X Vg =5
V3 = sin g =sinb Tg = 53%3- = T3 X COS Vg = —0.284
V4 = V1 + V2 = 0.693 + 10 U2 2542% = =l
U 25423‘11 = b2 =il
vs =vs—vs = 10.693 + 0.959 T3 = @53—5;-3 = 75 x (—1) =-1
V4 Us gzi — sl = i
v Yy =1Us = 11.652 Us =y =1

0 0
Reverse mode example, evaluated at (x,, X,) = (2, 5). Both = and Y are computed
72 0x 0xo

on the same reverse pass starting from the output
_ 9y _
B=y=g =1 [1502.05767]
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Current state of differentiable programming

Evolution of frameworks

From: coarse-grained (module level) backprop
Towards: fine-grained, general-purpose automatic differentiation

1 TensorFlow

O PyTorch dx
rnr

theano .
2008
torch?7 . torch-autograd
2011 2015
PyTorch
2016 >
HIPS autograd ——»
2014
TensorFlow TensorFlow TensorFlow2 _____
2015 eager exec 20719
2017
JAX
2018 g
Auto-diff tools: http://www.autodiff.org/ [slide G. Baydin]
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Differentiable programming in HEP

Incorporating automatic differentiation in HEP software

Analysis 1

Differentiable Programming in Analysis Code ient | Anaiysis 2

* Optimize free parameters of an analysis with
respect to the desired physics objective

* End-to-end differentiable analysis workflow

[figure N. Simpson]

Differentiable Programming in Simulation Code
* Compute gradient for simulated samples with respect to parameters of simulation
* EFT, Cosmology, MadGraph (evaluation of matrix element using autodiff), ...

Differentiable programming in High Energy Physics, SnowMass 2021
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Differentiable analysis: NEOS

End-to-end optimized analysis pipelines that use the analysis sensitivity
including systematic uncertainties as the objective function

github.com/gradhep/neos

setting hypothesis tests profile likelihood
—_—_ H, H 2
\‘ ‘I 1 < i. (t" / 9 )
\‘ ’1 e i _
o ~(p8)

: - ~
[. ] n!r\&l\ N\ 7
b3 5 N = N —
[-...
jagged data histograms & observables binned poisson

model

[Slide Nathan Simpson]
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Inference Aware Neural Optimization [1806.04743, de Castro, Dorigo]

* Include nuisance parameters in the loss function and directly minimize
variance of parameters of interest

1.75 cross-entropy
inference-aware

= e b
~ = P
w = (o

profiled likelihood Al—Ing)
o]
Ln
[}

0.00 J ; . .
20 30 40 50 60 70 80
s parameter of interest

Profiled likelihood around the expectation value for the parameter of interest
for inference-aware models cross-entropy loss based models.
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INFERNO algorithm

compute via automatic differentiation

‘Bro Ty |- | Ly - f @ Z Sp ‘long U
N o \g 2R RN 2NN ~/

SIMULATOR OR NEURAL SUMMARY INFERENCE-AWARE
APPROXIMATION NETWORK STATISTIC LOSS

stochastic gradient update '+l = @t + n(t)V U

Algorithm 1 Inference-Aware Neural Optimisation.

Input 1: differentiable simulator or variational approximation g(8).
Input 2: initial parameter values 6.

Input 3: parameter of interest wg = 6.

Output: learned summary statistic s(D; ¢).

1: fori=1to N do

2: Sample a representative mini-batch G from g(8,).

3:  Compute differentiable summary statistic 3(Gs; @).

4: Construct Asimov likelihood L4 (0, ¢).

5. Get information matrix inverse I(0)~! = H,"'(log L (0, ¢)).
6:  Obtainloss U = I, (8,).

7:  Update network parameters ¢p — SGD(V 4U).

8: end for

[taken from 1806.04743]
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Optimization of detector design

Can automatic differentiation be applied to detector optimization ?
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Optimization of detector design

Design of detectors for particle physics applications traditionally relies on
individual optimization of each subdetector

* Track first, destroy later

* First detect ionization tracks in tracker, then measure energy deposits from
destructive interaction with thick calorimeters

* Per-subdetector optimization
* subdetector-specific figures of merit (e.g. momentum resolution)
* Impact on physics goals typically considered in a second step

Optimization of a joint problem # different from individual optimization

argmaxy y(L(x,y)) # [argma.xx(f L(x,y)dy), argmax,( [ L(x, y)dx)]
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Proof of concept: MUonE experiment

Example of geometry optimization: MUonE experiment
* MUonE: high precision muon-electron differential cross section
— hadronic contributions to g-2 muon anomaly

. e muon filter
M2 ub 'f — | u chamber
pocam j?/_ ey | NN N | R ‘e
150 GeVie .- J7]
station #1 #2 #3 I Hk #N
ECAL

Optimizing geometry of the detector
* Likelihood minimization (not AD)
* Factor 2 improvementin FOM —» ™
* No increase of detector cost

0.005

Original layout

Opimized layout

1 L M |
0.08 01 0.12 0.14

0...|--.|...|-..
0.02 0.04 0.06

[T. Dorigo, https://doi.org/10.1016/j.phys0.2020.100022] 2
Relative resolution in g2 as a function g

of g2. The higher black line is the
original proposal by the MUonE coll.
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Generic optimization pipeline

TRIESTT 17— (UEDRAIES

CHANGES IN VERSION 10.17:
THE CPU NO LONGER OVERHERATS
WHEN YOU HOLD DOWN SPACEBAR.

COMMENTS:
LONGTIME UsERY weiEs:
THIS DPPATE BROKE. MY WORKFLOW/!
MY CONTRCL KEY 15 HARD ToREACH,
50 I HOLD SPACEBAR INSTERD, AND T

mmmwmﬁ
RAPID TEMPERATURE. RISE As CONTROL,

ADYIN WRITES:
THAT'S HORRIFYING.

[owGTineUserY WRITES:

(OOK, MY SETUP WORKS FOR ME.
JusT ADD AN OPTION To REENRBLE
SPACEBAR HERTING.

EVERY CHANGE BREAKS SOMEONE'S WORKFLOW.
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Generic optimization pipeline

Input layer | Hidden layers i Qutput layer

Input 1

“"A\ Output 1

O
Kelieie
ﬁ!}.“““‘“\“( -

Data NN output

2 A@ A

Petlie Y :
"A{ % Output n

E /«(
Data o e b t I
(particles) arameters or Interes
- _

Differentiable simulated
detector modules

-
Minimization of objective function through automatic differentiation



Generic optimization pipeline

What if simulator is not differentiable ? Try generative surrogate

Data e P ters of interest
(particles) arameters of interes
\/
Differentiable simulated
detector modules
————————————————————————————————————————————————————— ]
eI Simulator i
Inputs iInputs and > (Non differentiable) —  Outputs :
parameters :
____________________________________________________ 1
Train
Sclufzise Simulator surrogate
Parameters | inputs and (Differentlable) —»  Outputs »| Objective
; parameters |, < le

Black-Box Optimization with Local Generative Surrogates, S. Shirobokov, V. Belavin,
M. Kagan, A. Ustyuzhanin, A. G. Baydin, https://arxiv.org/abs/2002.04632
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Muon shielding in SHIP

Minimize muon background fluxes in the SHIP steel magnet by varying its geometry

Muoenshield
Target and
hadron absorber

Local generative surrogate solution is shorter and has lower mass than other
proposal, hence improving efficacity of the experiment and reducing its cost

Objective
function

0 500 1000 1500

£, om

2000 2500 3000

Size (cm)

i] 500

1000 1500

£, om

2000 2500 3000

Geometry of the magnet
42 parameters to optimize
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100 — LGSO
50
—— Width at the beginning
100 —— width at the end
—— Height at the beginning
80 —— Height at the end
— Gap at the beginning
60 —— Gap at the end
—_—__\/__
40 __f
"‘.h.___-““-‘__
20 :"“ [2002.04632]
0
0 20 40 60 80 100 120

Number of calls
Evolution of 6 parameters
during optimization
33
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Machine-Learning Optimized

Design of Experiments
MODE Collaboration 'WOLE

https://mode-collaboration.github.io

A. G. Baydin>, A. Boldyrev4, K. Cranmers8, P. de Castro Manzano!?, T. Dorigo?, C.
Delaere?, D. Derkach#?, ]J. Donini3, A. Giammanco?, J. Kieseler’, G. Louppe®, L
Layer?, P. Martinez Ruiz del Arbol®, F. Ratnikov?, G. Strong?!, M. Tosi?, A.
Ustyuzhanin4, P. Vischia?, H. Yarar! + 8 members that joined recently

1 INFN, Sezione di Padova (and associates from Padova and Naples Universities), Italy
2 Université Catholique de Louvain, Belgium

3 Université Clermont Auvergne, France

4 Laboratory for big data analysis of the Higher School of Economics, Russia

5 University of Oxford
6 Université de Liege
7 CERN

8 New York University
9 IFCA

—~ 'l.‘

S ((/ UCL ;
& (_INFN a'i;_.mi;,:: 2 s\
I F ( A Istituta Nazionale di Fisica Nucleare N Y U A uve rg he de Louvain w
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MODE ultimate goals

The target of MODE is to design and offer to the community a scalable, versatile
architecture that can provide end-to-end optimization of particle detectors,
proving it on a number of different applications across different domains

Simulation
of physics
Processes

| Generation
Validation

PEI'tIClE- Detector Detector re:::neifi]an Differentiable Analysis
|eve| truth simulation sl reconstructed | model

response signals

[taken from T. Dorigo]




MODE workshop(s)

Started series of workshop on automatic differentiation for experimental design

* 1° edition: 6-8 September 2021, Louvain-la-Neuve,
https://indico.cern.ch/event/1022938/

* Sponsored by JENAA (Joint APPEC, ECFA and NuPECC) and IRIS-HEP
* 105 participants (one third of which present in person), about 30 talks

B UCLouvain @ A - i,
ek i i s b 'H. Il {_Nr” frov

Avditoriunn Cyckadron 01, CP3, Universitd cathollpue de Louwain
Chemin di Cyclodron 2, Louvmin-ko-Rewwe, Belgiom

1 Workshop on
Differentiable Programming

for Experimental Design

Septemnberét- 8th, 2021

fankine and in-persan)

The workshop aims al bringing togedher compuler scientists and physiciss
froem the HEF, astro-HEP, nuclear, and neutring physics communites to develop
aptirmized solulions o detecior design and experimental messurements

Sessions:

A
¢ Snare of De AFL i CoMBULED SEiRRRE 2 Univamiy of Bockord r?‘_
Appicanons oo muon comaegraphy ]
- Appicstinn i HEF w
AppRCaliniG b astro-HER 2 Mikhail Belkin
AppAGainns ©o nucisne physics E Halickoglu Bata Sclener Imiiiute
2 e mOina W keI TR 5 Universicy ol Calfornia. San Diegn
[=1z%

%ﬁ‘l—}l‘:— To ensuTe your pamaipanon

i e A .
o N I p .
[ Fs reqistor at indico. com chlsven/1022938
artematisna afvivry commiteoe
D ]
KA Drusemar. Mow Yook Ledaraky
E' B [ T L Beaies, v Aot dlsagna
| Vhan & i LT O
= ney P Gy, e o Padons
o 0. Michin. Liversitd th o do Leavsia GH v (0¥
3 o B L T it o Ll AL A AL
T Dl I~ S P L N, v Pt
E JENALA A T B Bwiren A Baree (10 DS
r & Sinang. U s § P L Tarae, SuAl
A £ it i, U i) e
e st el L ot L maied . Whemipe. t vty ol Ao frada
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Differentiable programming for muography

Tomography: exploit atmospheric muon flux to map the interior of objects

Muon absorption

Quasi-
horizontal
muons

Muon scatterin

N V2N

i
oS

[images : A. Giammanco]


https://indico.cern.ch/event/1022938/sessions/407048/attachments/2305245/3921785/muography-mode-workshop2021-summary.pdf

Muon tomography

Volume with unknown composition sandwiched between detectors

High Xn
material

High X, = low Low X, = high
scattering scattering

Infer X, (radiation length) of volume by measuring muon scattering

How should detectors be positionned for best performances ?
 i.e Muon detection accuracy, resolution on XO,

* But also: cost, size, ...
[see G. Strong talk]


https://indico.cern.ch/event/1022938/contributions/4487336/attachments/2304133/3919739/GSTD_ModeWS_06-09-21.pdf

TomOpt: Tomography Optimization

“Simple” use-case : muon scan of volume of unknown density
Still under development: code and results from Giles Strong
Promizing first results already achieved

\ Learnable XYZ & XY-span
Fixed res. & eff.

[G. Strong talk]


https://indico.cern.ch/event/1022938/contributions/4487336/attachments/2304133/3919739/GSTD_ModeWS_06-09-21.pdf

Sl

012345678%9

Layer O
9876543210
= n

- 000073

Layer 1

98?6543210

- 000070

0123456789

= 000065

Layer 2

9876543210

0123456789 H0000

0.00055

Layer 3

PBT6E543210

- 0.00050

- 000045

Layer 4
9876543210

0123456789

_ﬁw‘-

0123456789

Predlctlon

LayerS
$8?6543? ]

9B76543210 9876543210 89876543210 0OB76543210 9876543210

9B76543210

0123456789
0123456789
.
0123456789
01234506789

0123456789

012345687890

True

: Tomography Optimization

=035

- 030

0235

020

Q15

-010

- 0.05

Example volume
* Block of lead (X,=0.005612m)

« Surrounded by beryllium (X,=0.3528m)

Prediction based on 100k muons

« 2h computation time

* Lead block clearly visible, but high z
uncertainty in scatter location causes
‘ghosting’ above and below

[G. Strong talk]
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TomOpt: Tomography Optimization

" — Loss function:
fh"." 2
™ XO,Z,TIUG XO,z,Pred)

Lyror = Z

E" i=1 Wi
jvpauel.s
Lot = Z fi (spanw-,spany,i)
=1

L= EEerr + O“CCOST

Loss Composition

Still a long way to go, but an important milestone for this use case

[G. Strong talk]
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Conclusion

Differentiable programming paradigm opens to many different applications
For HEP: end-to-end optimization of analysis, simulators, detectors, ...

MODE collaboration: ML optimization of detector design

* Several projects: muon tomography (advanced), muon collider detector
shielding (starting), Hybrid calorimeter (staring) + few others considered

We know this is a challenging and ambitious task !

Objective is not to substitute experts in detector design

Domain knowledge crucial in setting up analysis workflow

Consider joining and bring you use case

Julien Donini — Differentiable programming and detector design optimization 42
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Surrogates for differentiability

Inputs ——p | Parameters R Outputs
x € R? P eR" F(x, )

Non-differentiable simulator (model)

e Run simulator many times
e Generate a (large) dataset of input - output pairs capturing simulator’s behavior

3.

e Use the dataset to learn a differentiable approximation of the simulator
(e.g., a deep generative model)

@ x ~ q(x)
y = F(z,v)
|

Inputs — Parameters . Outputs
x € R? P € R” F(z,)

Differentiable surrogate with V, F’

[slides G. Baydin]
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Surrogates for differentiability

Algorithm 1 Local Generative Surrogate Opti-
mization (L-GSO) procedure

Require: number N of %, number M of @ for surro-

gate training, number K of @ for 1) optimization
step, trust region U,, size of the neighborhood e,
Euclidean distance d

I: Choose initial parameter )
2: while 1) has not converged do
3:  Sample 1); in the region ¥, i=1,...,N
4:  For each 1;, sample inputs {@}} 1, ~ q( )
5:  Sample M x N training examples from
simulator y;; = F'(x}; )
6:  Store y,;, .’B; , ¥; in history H
1=1,...,N;5=1,.... M
7:  Extract all y;, i, ¢ from history H,
i d(ah, 1) < e
8:  Train generative surrogate model
So(z1, i;41), where z; ~ N(0,1)
9:  Fix weights of the surrogate model €
10:  Sample yi = Se(zk,mk; 1Y),z ~ N(0,1),
zi~ql@), k=1,...,K
11: V4 ER(®Y)] « ~ Z IR 9502k 2nid)
12: 4 « SGD(, V E[R(5)))
13: end while
Julien Donini —

Y* = argmin E[R(y)] = arg mln/ R(y)p(y|x; ¥)q(x)dxdy

¥

~ arginin N ZR(F(%; ¥))

V4 E[R(y)] = % > VyR(So(zi, zis )

7=1

Differentiable programming and detector design optimization
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TomOpt: end-to-end optimization

®  Consider instead simulating muon

propagation and expressing the entire [ Muons ]
inference chain as a differentiable system

]

TIRT

*  We can now compute the analytical

"  ——
effects of detector parameters (position,
size, resolution, etc.) on system outputs Known -

® Now express the desired task as a loss volumes

function

® Eg.error on X, predictions, detector
costs, time to achieve desired resolution

=
 E——
e —
®  We can now backpropagate the loss
gradient to detector parameters and

optimise via gradient descent

Just like a neural network

Forwards pass Backwards pass

[G. Strong talk]
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radiography

Detector parameters

Cost constraintsand.
) Continuous siﬂstématit:umerhinﬁes
4 model (GAN, . g
VAE, local
surrogates)

Nuisance
model

e

Propagation, 1
multiple 1 Trajectory finder and

| scattering, hit H construction of density map
generation :

- - -

Conceptual layout of an optimization pipeline for a muon
radiography apparatus. Modules within the dashed black box
inform the validation of a continuous model and are not part of
the optimization flow

[G. Strong talk]
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Joining MODE ?

If you are doing experimental research in HEP, astro-HEP, neutrino Do | have a use case checklist:
physics, or high-energy nuclear ph\ﬁ.‘ics, or if you are working at spin-offs

iInvolving, e.g., muon tomography, hadron therapy, or other endeavours
which operate with instruments that extract information from the ‘
interaction of energetic radiation with matter, you are very likely to have assembly, or upgrade of an instrument?
a use case — a system liable to benefit from a study with differentiable

programming. Can you specify one or a set of
desirable scientific goals from its use?

Are you involved in the design,

The idea of MODE is to brin% together ML experts who are developing
i

the interfaces for these applications, with the researchers who have Are those goals achieved through
problems to solve in their area of interest information processing?
We cannot offer a solution to any given problem (we lack the If your answers to all are «yes»,

manpower to work on-demand), but together we may work toward it  you have something to optimize and
chances are this can’t be done
without a deep learning model of

[0 Consider joining MODE, and bring your use case! } _ , ,
the full information extraction chain.

[slide T. Dorigo]
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