RECENT RESULTS FROM THE LATTICE ON STRONG-INTERACTION-STABLE HEAVY TETRAQUARKS

IP2I WORKSHOP ON DOUBLE CHARM TETRAQUARK AND OTHER EXOTICS Lyon, November 22-23, 2021

KM, B. Colquhoun, A. Francis, R. Hudspith, R. Lewis

(C)FHLM: PRD102 (2020) 114506 (+earlier, in progress) [Francis, Hudspith, Lewis, Colquhoun +KM]
 (J)MP: arXiv:2111.01147 [hep-lat] [Mathur, Padmanath]; PRD99 (2019) 034507 [+Junnarkar]
 LMPW: arXiv:2108.10704 [hep-lat]; PRD100 (2019) 014503 [Leskovec, Meinel, Pflaumer, Wagner]

SPECIAL FEATURES OF DOUBLY HEAVY TETRAQUARK CHANNELS

• Attractive interactions for localized $\overline{QQ}' qq'$ configurations absent in well-separated two-heavy-meson states

≻ Color Coulomb for \overline{QQ}' in $3_c (\Rightarrow qq' in \overline{3}_c)$

→ Light quark spin-dependent for qq' in "good light diquark" (J^P=0⁺, $\overline{3}_{F}$, $\overline{3}_{c}$) configuration (as per heavy baryon splittings)

- Attractive long-distance π -exchange in V_HP_{H'} J^P=1⁺ channels (Manohar, Wise)
- Channels favorable to possible doubly heavy tetraquark binding
 - For Q'=Q: qq' in good light diquark; QQ with $J_{QQ}=1$ (no spatial excitation), 3_c : overall $J^P=1^+$, $\overline{3}_F$
 - For $Q \neq Q'$: qq' in good light diquark; QQ' with $J_{QQ''}=0$ or 1 (no spatial excitation), 3_c : overall $J^P=0^+$ or 1^+ , $\overline{3}_F$

A FEW ADDITIONAL DETAILS/OBSERVATIONS

"Reality" of the good light diquark attraction: lightquark spatial correlations from the lattice

arXiv: 2106.09080

- Colour Coulomb attraction proportional to \overline{QQ}' reduced mass
 - greatest for bb, then bc, then cc
 - bound J^P=1⁺ doubly heavy QQ tetraquark in QCD for sufficiently heavy Q
- Heavy baryon splittings⇒ increasing good light diquark attraction with decreasing m_a
 - > light m_{π}, short extrapolation to physical m_{π} important on lattice
 - \succ potentially relevant for lattice if state weakly bound at physical m_{π}
- Σ_{b} - $\Lambda_{b} > \Sigma_{c}$ - $\Lambda_{c} \Rightarrow$ residual 1/m_h-suppressed heavy-light interaction repulsive

EXTENSIVE PAST INVESTIGATIONS USING QCD-INSPIRED MODELS (since mid-80s; many experts at this workshop)

- Model parameters fixed from fits to ordinary meson, baryon spectrum
- \Rightarrow model qq $\overline{6}_c$, q \overline{q} 8_c interactions (present in multiquark sector) entirely unconstrained
- differing model spin-flavor-color dependences
 ⇒ different tetraquark results (e.g., figure)
 - chiral quark models (flavor dependent, color-independent spin-spin interactions)
 - c.f. non-chiral quark models (OGE-like color-dependent spin-spin interactions)
- Experimental/lattice tetraquark channel results can rule out one (or both)

DOUBLY HEAVY TETRAQUARKS ON THE LATTICE

• Generic correlator (matrix) in a given channel

$$\begin{split} C_{\mathcal{O}_1\mathcal{O}_2}(p,t) &= \sum_x e^{ip \cdot x} \langle \mathcal{O}_1(x,t)\mathcal{O}_2(0,0)^{\dagger} \rangle , \\ &= \sum_n \langle 0 | \mathcal{O}_1 | n \rangle \langle n | \mathcal{O}_2 | 0 \rangle e^{-E_n(p)t} \end{split}$$

 {O_k}: operators with channel quantum numbers
 e.g. for Q=Q'=b, qq'=ud, J^P=1⁺: "diquark-antidiquark", "meson-meson" ("B B*"), ...

 $D(x) = (u_a^{\alpha}(x))^T (C\gamma_5)^{\alpha\beta} q_b^{\beta}(x)$ $\times \bar{b}_a^{\kappa}(x) (C\gamma_i)^{\kappa\rho} (\bar{b}_b^{\rho}(x))^T$ $M(x) = \bar{b}_a^{\alpha}(x) \gamma_5^{\alpha\beta} u_a^{\beta}(x) \ \bar{b}_b^{\kappa}(x) \gamma_i^{\kappa\rho} d_b^{\rho}(x)$

 $-\,ar{b}^{lpha}_a(x)\gamma^{lphaeta}_5 d^{eta}_a(x)\,\,ar{b}^{\kappa}_b(x)\gamma^{\kappa
ho}_i u^{
ho}_b(x)$

• Zero-momentum projection, $C(t) \sim exp(-M_0 t)$ at large Euclidean time, t

Generalities/practicalities

- Exponential signal decay ↔ growth of noise at large t
- Effective mass: $\log[C(t)/C(t+a)] \rightarrow (aM_0)$ at large t
- Goal: ground-state effective mass plateaus before signal overwhelmed by noise
- Overlaps operator-dependent, hence want operator(s) with
 - good ground-state overlap
 - reduced excited-state overlap
- Smearing of quark fields (e.g. at source) improves ground state overlap (our results: Coulomb gaugefixed wall sources, local (point) or "box" sinks ↔ C(t) from wall-local or wall-box propagators)

BOX SINK IMPROVEMENT

- Wall-local propagators (sink location (x,t)): S_{WL}(x,t)
 Typically: approach ground state plateaus from below (negative excited-state contamination)
 ▶ Late t plateaus in tetraquark channels
 - Wall-wall propagators: $S_{WW}(t) = \Sigma_x S_{WL}(x, t)$
 - Advantage: ground state plateaus for diagonal correlator elements approached from above (positive excited state contamination)
 - Disadvantage: very noisy
 - Wall-box propagators: intermediate between WL, WW: $S^{R}_{WB}(x,t) = \frac{1}{N} \sum_{\{r\} < R} S_{WL}(x+r,t)$. Expect
 - Intermediate behavior/reduced excited state contamination
 - \succ Optimal improvement for R \simeq ground state size

• E.g., the $ud\overline{bb}$ I=0, J^P=1⁺ channel

NEAR-PHYSICAL-POINT CHANNEL-SCAN FOR DEEPLY BOUND TETRAQUARK STATES

- CFHLM: PRD 102 (2020) 114506 [arXiv:2006.14294]
- Ensemble details

➤ n_f=2+1, Wilson clover, Iwasaki gauge

- > NRQCD for b, relativistic heavy quark action for c
- ✓ 48³ x 64, 1/a=2.194(10) GeV (a~0.09 fm); larger volume extension of PACS-CS 32³ x 64 ensembles, same parameters

 $> m_{\pi} = 192 \text{ MeV, } m_{\pi}L = 4.2$

- > 122 configurations, 8 source locations per configuration
- Conclusions: tetraquarks bound by more than $\sim 10-20$ MeV ruled out in all channels except for J^P=1⁺, $\overline{3}_{F}$ multiplet (I=0 ud \overline{bb} and I=1/2 ls \overline{bb} states)
- more on the doubly bottom states later; first the other channels

THE I=0 ud \overline{bc} J^P=0⁺ and 1⁺ CHANNELS

• J^P=0⁺ effective mass

Spectra

> J^P=0⁺, 1⁺ both unbound
 > c.f. LMPW (preliminary): both unbound
 > c.f. MP (preliminary) : J^P=1⁺ BE ≃ 20 MeV

THE I=1/2 Is \overline{bc} J^P=0⁺ and 1⁺ CHANNELS

• J^P=1⁺ effective mass

Spectra

> $J^{P}=0^{+}$, 1⁺ both unbound > c.f. MP (preliminary): $J^{P}=1^{+}$ BE $\simeq 10$ MeV

THE I=0 ud \overline{sb} J^P=0⁺ and 1⁺ CHANNELS

• J^P=1⁺ effective mass

Spectra

 $> J^{P}=0^{+}$, 1⁺ both unbound

Original motivation: possible SU(3)_F ud \overline{sb} partner of D0's putative us $\overline{db} X(5568)$

THE I=0 ud \overline{sc} **J**^P**=0**⁺ and **1**⁺ **CHANNELS**

• J^P=0⁺ effective mass

• J^P=1⁺ effective mass

Spectra

THE J^P=1⁺, I=0 ud*cc* CHANNEL (other lattice groups)

- The LHCb experimental T_{cc} discovery (and motivation for this workshop!)
 - very weakly bound (essentially at threshold)
 - \succ consistent with favored I=0, J^P=1⁺
- HadSpec 2017 lattice [JHEP 11 (2017) 033; arXiv:1709.01417]: no evidence for bound state or narrow resonance at m_π=391 MeV
- JMP [PRD99 (2019) 034507]: 23(11) MeV binding (also 8(8) MeV for I=1/2 lscc) with caution re possible residual FV effects

THE DOUBLY BOTTOM $J^P=1^+$, $\overline{3}_F$ CHANNELS

- CFHLM: PRD 102 (2020) 114506+in progress: updates, improves wall-local study of PRL118 (2017) 142001)
 - ➢ PACS-CS n_f=2+1, Wilson clover, Iwasaki gauge, a=0.09 fm, 32³x48 of earlier PRL, plus new largervolume 48³x64 ensembles with m_π < 200 MeV</p>
 - Box-sink construction dramatically improves the ground state signal c.f. earlier PRL results
- Other groups
 - → (J)MP: n_f=2+1+1 HISQ, wall-local, a-dependent minimum m_π: 153, 345, 545 MeV for a~0.12, 0.09, 0.06 fm (near physical point for coarsest)
 - LMPW: RBC/UKQCD n_f=2+1 DWF, Iwasaki gauge ensembles, 2 with physical m_π; smeared source, local sink,; 3 local operators, 2 non-local "mesonmeson" for improved overlap with threshold 2meson state

• Example of box-sink improvement for $ud\overline{bb}$ I=0, J^P=1⁺ channel, m_π =192 MeV

• Q: wall-local/late-plateau an issue for (J)MP?

CFHLM UPDATED J^P=1⁺, I=0 ud \overline{bb} , I=1/2 Is \overline{bb} BINDING ENERGIES

• Fits with m_{π} <300 MeV

• Fits with $m_{\pi} < 702 \text{ MeV}$

PRELIMINARY UPDATES

Errors: statistical, optimal box-sink size, R, choice only at present (i.e., preliminary)

• From $m_{\pi} < 300 \text{ MeV fits}$ $\geq I=0 \text{ ud} \overline{bb}: 109(5) \text{ MeV}$ $\geq I=1/2 \text{ ls} \overline{bb}: 48(7) \text{ MeV}$

• Extending fits to $m_{\pi} < 702 \text{ MeV}$ $\gg |=0 \text{ ud}\overline{bb}: 109 \rightarrow 108 \text{ MeV}$ $\gg |=1/2 \text{ ls}\overline{bb}: 48 \rightarrow 52 \text{ MeV}$

JMP J^P=1⁺, I=0 ud \overline{bb} , I=1/2 Is \overline{bb} BINDING ENERGIES

- Binding energies
 ▶ I=0 ud bb: 143(34) MeV
 ▶ I=1/2 Is bb: 87(32) MeV
- Effective mass plateaus? E.g. m_{π} =575 MeV ls \overline{bb} example

LMPW J^P=1⁺, I=0 ud \overline{bb} , I=1/2 ls \overline{bb} BINDING ENERGIES

I=0 ud \overline{bb} physical point extrapolation

- Binding energies
 - ➢ I=0 ud bb: 128(26) MeV (PRD100 (2019) 014503)
 - I=1/2 Is bb: ~80 MeV, ~25 MeV uncertainty (preliminary Lattice 2021 report, arXiv:2108.10704)

• I=0 ud \overline{bb} m_{π}=340 MeV effective mass e.g.

16/20

CONCLUSIONS/EXPECTATIONS/SPECULATIONS (1)

• Lattice tetraquark binding energy summary

> Clear evidence for strong-interaction-stable $J^{P}=1^{+}$, I=0 ud \overline{bb} state: bound by >100 MeV, hence with only weak decays (experimental detection challenge)

- \succ Clear evidence for strong-interaction-stable J^P=1⁺, I=1/2 ls \overline{bb}
 - * possibility of < 45 MeV binding, ~100% BF EM decay to BB_sγ (CFHLM lattice, Eichten-Quigg/Braaten-He-Mohapatra HQS results)
 - Inding > 45 MeV however also possible (JMP, preliminary LMPW): weak decays only, multiple modes, small BFs

> No states with several x 10 MeV binding in other channels in CFHLM study

CONCLUSIONS/EXPECTATIONS/SPECULATIONS (2)

• Lattice/LHCb T_{cc}: tests of model predictions

- Chiral quark models: predictions incompatible with lattice (and HQS) results/overbind T_{cc} c.f. LHCb
- ➢ Non-chiral quark models (OGE-like spinspin interactions): compatible with weakly bound T_{cc}, predictions in other channels in reasonable agreement with lattice (and HQS)
- Conclusion: chiral quark model picture of effective low-energy interactions (in current forms) ruled out by multi-quark sector tests

CONCLUSIONS/EXPECTATIONS/SPECULATIONS (3)

- Key physical mechanisms at play in doubly heavy tetraquark binding
 - Heavy-heavy color Coulomb attraction: as expected + evidence from variable b' mass study (figure)
 - Spin-dependent good-light-diquark attraction (increasing binding with decreasing light-quark mass)

• Variable b mass study: the heavyheavy color Coulomb (m_{π} =299 MeV)

CONCLUSIONS/EXPECTATIONS/SPECULATIONS (4)

• A possible I=0, J^P=1⁺ ud *bc* state?

- > very weak I=0, J^P=1⁺ ud \overline{cc} , T_{cc} binding suggests molecular-type component, importance of long-distance π -exchange force
- \succ same π -exchange force operative in analogous I=0, J^P=1⁺ ud \overline{bc} channel
- in addition, short-range attraction likely stronger for ud bc than ud cc (more attractive color Coulomb, similar good-light-diquark attraction)
- > CFHLM, LMPW, MP lattice studies all concur: no deep binding
- suggests likelihood of I=0, J^P=1⁺ T_{bc} analogue of T_{cc} bound by < 45 MeV, hence EM decay, likely to BDγ (unless weakly bound I=0, J^P=0⁺ tetraquark also exists)
- Experimental search for correlated BD feasible?

Thanks for your attention

in memory of Gabriel Karl and Simon Eidelman

BACKUP SLIDES (1)

EXPECTATIONS FROM HEAVY BARYON SPLITTINGS

Observed splittings

$$\Sigma_{\rm b} - \Lambda_{\rm b} = 194 \text{ MeV}$$

$$\Sigma_{\rm c} - \Lambda_{\rm c} = 167 \text{ MeV}$$

>
$$\Xi_{b}' - \Xi_{b} = 142 \text{ MeV}$$

> $\Xi_{c}' - \Xi_{c} = 109 \text{ MeV}$

- good ud, &s diquark attraction relative to corresponding spin averages: ~145, 105 MeV ⇒ *increased* attraction with *decreased* m_q
- h=c vs. h=b: residual ($\propto 1/m_h$) lightheavy interactions eat into good diquark attraction with decreasing m_h

BACKUP SLIDES (2a)

• CFHLM effective mass plot examples > PACS-CS E5 ensemble (m_{π} =299 MeV)

I=0, $J^{P}=1^{+}$ ud \overline{bb}

I=0,
$$J^{P}=1^{+}$$
 Is \overline{bb}

25

BACKUP SLIDES (2b)

• CFHLM effective mass plot examples \succ new 48³ x 64 κ_l =0.13779 ensemble (m_{π}=165 MeV)

$$I=0, J^{P}=1^{+} ud\overline{bb} \qquad I=0, J^{P}=1^{+} Is\overline{bb}$$

BACKUP SLIDES (3)

LMPW 2019, I=0, J^P=1⁺ udbb: possible residual fit window dependence?
 m_π=340 MeV multi-exponential fits,, variable windows, variable # of exponentials

