QCD i.e. Effective Field Theories and Lattice torte X Y Z Frontier

Dedicated to Gabriel Karl and atomic physics

- Exotic states i.e. states different for qqbar or qqq have been predicted before and after the inception of QCD: in the last decades they (X Y Z) have been observed in the sector with two heavy quarks QQbar, at or above the quarkonium strong decay threshold
- Exotic states i.e. states different for qqbar or qqq have been predicted before and after the inception of QCD: in the last decades they (X Y Z) have been observed in the sector with two heavy quarks QQbar, at or above the quarkonium strong decay threshold
- $X Y Z$ offer the unique possibility to investigate the dynamical properties of strongly correlated systems in QCD—> however it is very difficult to describe them in QFT
- Exotic states i.e. states different for qqbar or qqa have been predicted before and after the inception of QCD: in the last decades they ($\mathrm{X} Y \mathrm{Z}$) have been observed in the sector with two heavy quarks QQbar, at or above the quarkonium strong decay threshold
- $X Y Z$ offer the unique possibility to investigate the dynamical properties of strongly correlated systems in QCD—> however it is very difficult to describe them in QFT
- We have now the tools to describe quarkonium in Quantum Field Theorys Nonrelativistic Effective Quantum Field Theories (NREFT) plus Lattice ; -we can extend these tools to $X Y Z$
- Exotic states i.e. states different for qqbar or qqq have been predicted before and after the inception of QCD: in the last decades they (X Y Z) have been observed in the sector with two heavy quarks QQbar, at or above the quarkonium strong decay threshold
- XYZ offer the unique possibility to investigate the dynamical properties of strongly correlated systems in QCD—> however it is very difficult to describe them in QFT
- We have now the tools to describe quarkonium in Quantum Field Theorys Nonrelativistic Effective Quantum Field Theories (NREFT) plus Lattice ; -we can extend these tools to $X Y Z$
- I will show how we can address $X Y Z$ states on the basis of an EFT called BOEFT and some lattice input i.e. directly in QCD

Quarkonium: multiscale system -> hierarchy of scales/hierarchy of NREFTs based on factorization which makes apparent symmetries hidden in QCD and increase model independent predictivity

Quarkonium: multiscale system -> hierarchy of scales/hierarchy of NREFTs based on factorization which makes apparent symmetries hidden in QCD and increase model independent predictivity

- pNRQCD addresses bound state formation—>gives the potentials and the non potential corrections, the nonperturbative physics is contained in gluonic gauge invariant objects

Plan of the talk

Quarkonium: multiscale system -> hierarchy of scales/hierarchy of NREFTs based on factorization which makes apparent symmetries hidden in QCD and increase model independent predictivity

- pNRQCD addresses bound state formation—gives the potentials and the non potential corrections, the nonperturbative physics is contained in gluonic gauge invariant objects
- XY Z: BOEFT this theory should encompass the different models depending on the dynamics; need lattice input but only on some glue correlators, not on each state

Plan of the talk

Quarkonium: multiscale system -> hierarchy of scales/hierarchy of NREFTs based on factorization which makes apparent symmetries hidden in QCD and increase model independent predictivity

- pNRQCD addresses bound state formation—>gives the potentials and the non potential corrections, the nonperturbative physics is contained in gluonic gauge invariant objects
- XY Z: BOEFT this theory should encompass the different models depending on the dynamics; need lattice input but only on some glue correlators, not on each state
- BOEFT for Hybrids: theory, spectra, spin separations, decays

Plan of the talk

Quarkonium: multiscale system -> hierarchy of scales/hierarchy of NREFTs based on factorization which makes apparent symmetries hidden in QCD and increase model independent predictivity

- pNRQCD addresses bound state formation—gives the potentials and the non potential corrections, the nonperturbative physics is contained in gluonic gauge invariant objects
- XY Z: BOEFT this theory should encompass the different models depending on the dynamics; need lattice input but only on some glue correlators, not on each state
- BOEFT for Hybrids: theory, spectra, spin separations, decays
- BOEFT for tetraquarks, pentaquarks, doubly heavy baryons

Material for discussion/references

Heavy quarkonium: progress, puzzles, and opportunities
N. Brambilla (Munich, Tech. U.) et al.. Oct 2010. 181 pp.

Published in Eur.Phys.J. C71 (2011) 1534
e-Print: arXiv:1010.5827 [hep-ph]-

QCD and Strongly Coupled Gauge Theories: Challenges and Perspectives
N. Brambilla (Munich, Tech. U.) et al.. Apr 2014. 241 pp.

Published in Eur.Phys.J. C74 (2014) no.10, 2981
e-Print: arXiv:1404.3723 chapter on exotics
N. Brambilla, S. Eidelman, C. Hanhart, A. Nefediev, C. P. Shen, C. E. Thomas, A. Vairo and C. Z. Yuan

The XY Z states: experimental and theoretical status and perspectives
Phys.Rept. 873 (2020) 1-154 • e-Print: 1907.07583 [hep-ex]

Quarkonium Hybrids with Nonrelativistic Effective Field Theories

Matthias Berwein , Nora Brambilla, Jaume Tarrús Castellà, Antonio Vairo
Phys.Rev. D92 (2015) no.11, 114019
e-Print: arXiv:1510.04299

Spin structure of heavy-quark hybrids
N. Brambilla, Wai KIn Lai, J. Segovia, J. Tarrus
A. Vairo

Phys.Rev.D 99 (2019) 1, 014017, e-Print:
1805.07713 [hep-ph]

Effective field theories for heavy quarkonium
Nora Brambilla, Antonio Pineda, Joan Soto, Antonio Vairo
Rev.Mod.Phys. 77 (2005) 1423
e-Print: hep-ph/0410047

Born-Oppenheimer approximation in an effective field theory language Nora Brambilla , Gastão Krein, Jaume Tarrús Castellà, Antonio Vairo
Phys.Rev. D97 (2018) no.1, 016016
e-Print: arXiv:1707.09647

QCD spin effects in the heavy hybrid potentials and spectra Nora Brambilla, Wai Kin Lai, J. Segovia, J. Tarrus Phys.Rev.D 101 (2020) 5, 054040 • e-Print: 1908.11699

Long range properties of 1S bottomonium states
N. Brambilla, G. Krein, J.. Tarrus, A. Vairo Phys.Rev.D 93 (2016) 5, 054002 • e-Print: 1510.05895

Oncala and Soto

Heavy hybrids: spectrum, decay and mixing
Phys.Rev.D 96 (2017) 1, 014004 •

Nonrelativistic effective field theory for heavy exotic hadrons

Systems with two heavy quarks: physical scales and physical significance consider QQbar (quarkonium) but things are similar for $\mathrm{QQ}, \mathrm{QQQ}$ etc

Quarkonium scales

I HE MASS SCALE IS PERTURBATIVE

$$
\begin{gathered}
m_{Q} \gg \Lambda_{\mathrm{QCD}} \\
m_{b} \simeq 5 \mathrm{GeV} ; m_{c} \simeq 1.5 \mathrm{GeV}
\end{gathered}
$$

Quarkonium scales

$$
\begin{aligned}
& \text { THE SYSTEM IS NONRELATIVISTIC(NR) } \\
& \Delta E \sim m v^{2}, \Delta_{f s} E \sim m v^{4} \\
& v_{b}^{2} \sim 0.1, v_{c}^{2} \sim 0.3
\end{aligned}
$$

I HE MASS SCALE IS PERTURBATIVE

$$
\begin{gathered}
m_{Q} \gg \Lambda_{\mathrm{QCD}} \\
m_{b} \simeq 5 \mathrm{GeV} ; m_{c} \simeq 1.5 \mathrm{GeV}
\end{gathered}
$$

Quarkonium scales

$$
\begin{aligned}
& \text { THE SYSTEM IS NONRELATIVISTIC(NR) } \\
& \Delta E \sim m v^{2}, \Delta_{f s} E \sim m v^{4} \\
& v_{b}^{2} \sim 0.1, v_{c}^{2} \sim 0.3
\end{aligned}
$$

I HE MASS SCALE IS PERTURBATIVE

$$
m_{Q} \gg \Lambda_{\mathrm{QCD}}
$$

$$
m_{b} \simeq 5 \mathrm{GeV} ; m_{c} \simeq 1.5 \mathrm{GeV}
$$

Quarkonium scales

THE SYSTEM IS NONRELATIVISTIC(NR) $\Delta E \sim m v^{2}, \Delta_{f s} E \sim m v^{4}$

$$
v_{b}^{2} \sim 0.1, v_{c}^{2} \sim 0.3
$$

I HE MASS SCALE IS PERTURBATIVE

$$
\begin{gathered}
m_{Q} \gg \Lambda_{\mathrm{QCD}} \\
m_{b} \simeq 5 \mathrm{GeV} ; m_{c} \simeq 1.5 \mathrm{GeV}
\end{gathered}
$$

THE SYSTEM IS NONRELATIVISTIC(NR) $\Delta E \sim m v^{2}, \Delta_{f s} E \sim m v^{4}$
$v_{b}^{2} \sim 0.1, v_{c}^{2} \sim 0.3$

I HE MASS SCALE IS PERTURBATIVE

$$
\begin{gathered}
m_{Q} \gg \Lambda_{\mathrm{QCD}} \\
m_{b} \simeq 5 \mathrm{GeV} ; m_{c} \simeq 1.5 \mathrm{GeV}
\end{gathered}
$$

$$
\begin{aligned}
& \text { Quarkonium scales } \\
& \text { THE SYSTEM IS NONRELATIVISTIC(NR) } \\
& \Delta E \sim m v^{2}, \Delta_{f s} E \sim m v^{4} \\
& v_{b}^{2} \sim 0.1, v_{c}^{2} \sim 0.3 \\
& \text { I HE MASS SCALE IS PERTURBATIVE } \\
& m_{Q} \gg \Lambda_{\mathrm{QCD}} \\
& m_{b} \simeq 5 \mathrm{GeV} ; m_{c} \simeq 1.5 \mathrm{GeV}
\end{aligned}
$$

QCD THEORY OF QUARKONIUM: A VERY CHALLENGING PROBLEM
Close to the bound state $\alpha_{\mathrm{S}} \sim v$

CCD THEORY OF CUARKONIUM: A VERY CHALLENGING PROBLEM

CCD THEORY OF CUARKONIUM: A VERY CHALLENGING PROBLEM

CCD THEORY OF CUARKONIUM: A VERY CHALLENGING PROBLEM

CCD THEORY OF CUARKONIUM: A VERY CHALLENGING PROBLEM
Q Close to the bound state $\alpha_{\mathrm{s}} \sim v$

QCD THEORY OF QUARKONIUM: A VERY CHALLENGING PROBLEM Close to the bound state $\alpha_{\mathrm{S}} \sim v$

CCD THEORY OF QUARKONIUM: A VERY CHALLENGING PROBLEM

NREFTs for quarkonium

Color degrees of freedom
3X3bar=1+8
singlet and octet QQbar

NREFTs for quarkonium

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n} c_{n}\left(E_{\Lambda} / \mu\right) \frac{O_{n}(\mu, \lambda)}{E_{\Lambda}}
$$

Color degrees of freedom
3X3bar=1+8
singlet and octet QQbar

NREFTs for quarkonium

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n} c_{n}\left(E_{\Lambda} / \mu\right) \frac{O_{n}(\mu, \lambda)}{E_{\Lambda}}
$$

Color degrees of freedom
3X3bar=1+8
singlet and octet QQbar

$$
\left\langle O_{n}\right\rangle \sim E_{\lambda}^{n}
$$

NREFTs for quarkonium
Color degrees of freedom
3X3bar=1+8

singlet and octet QQbar

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n} c_{n}\left(E_{\Lambda} / \mu\right) \frac{O_{n}(\mu, \lambda)}{E_{\Lambda}}
$$

NREFTs for quarkonium
Color degrees of freedom 3X3bar=1+8

$$
\mathcal{L}_{\mathrm{EFT}}=\sum_{n} c_{n}\left(E_{\Lambda} / \mu\right) \frac{O_{n}(\mu, \lambda)}{E_{\Lambda}}
$$

Quarkonium with NREFTs: Non Relativistic QCD (NRQCD)

Quarkonium with NREFTs: Non Relativistic QCD (NRQCD)

Quarkonium with NREFTs: Non Relativistic QCD (NRQCD)

potential NonRelativistic QCD (pNRQCD): addresses the bound state formation

potential NonRelativistic QCD (pNRQCD): addresses the bound state formation

potential NonRelativistic QCD (pNRQCD): addresses the bound state formation

$$
\mathcal{L}_{\mathrm{pNRQCD}}=\sum_{k} \sum_{n} \frac{1}{m^{k}} c_{k}\left(\alpha_{\mathrm{s}}(m / \mu)\right) \times V\left(r \mu^{\prime}, r \mu\right) \times O_{n}\left(\mu^{\prime}, \lambda\right) r^{n}
$$

potential NonRelativistic QCD (pNRQCD): addresses the bound state formation

$$
\mathcal{L}_{\mathrm{pNRQCD}}=\sum_{k} \sum_{n} \frac{1}{m^{k}} c_{k}\left(\alpha_{\mathrm{s}}(m / \mu)\right) \times V\left(r \mu^{\prime}, r \mu\right) \times O_{n}\left(\mu^{\prime}, \lambda\right) r^{n}
$$

Quarkonium with EFT

pNRQCD addresses the bound state dynamics
$\mathcal{L}_{\text {pNREFT }}=\int d^{3} r \phi^{\dagger}\left(i \partial_{0}-\frac{\mathbf{p}^{2}}{m}-V\right) \phi+\Delta \mathcal{L}$
$\mathcal{L}_{\text {pNREFT }}=\int d^{3} r \phi^{\dagger}\left(i \partial_{0}-\frac{\mathbf{p}^{2}}{m}-V\right) \phi+\Delta \mathcal{L}$

- It is obtained by integrating out hard and soft gluons with p or E scaling like $m, m v$.
- The d.o.f. are $Q \bar{Q}$ pairs (sometimes cast in color singlet S and color octet O) and ultrasoft modes (e.g. light quarks, low-energy gluons):
$\phi=S$
- The Lagrangian is organized as an expansion in $1 / m$ and r.
- The form of $\Delta \mathcal{L}$ and of the ultrasoft modes depends on the low energy dynamics.

$$
\mathcal{L}_{\mathrm{pNREFT}}=\int d^{3} r \phi^{\dagger}\left(i \partial_{0}-\frac{\mathbf{p}^{2}}{m}-V\right) \phi+\Delta \mathcal{L}
$$

- It is obtained by integrating out hard and soft gluons with p or E scaling like $m, m v$.
- The d.o.f. are $Q \bar{Q}$ pairs (sometimes cast in color singlet S and color octet O) and ultrasoft modes (e.g. light quarks, low-energy gluons):
$\phi=S$

in QCD another scale is relevant Λ_{QCD}

- The Lagrangian is organized as an expansion in $1 / m$ and r.
- The form of $\Delta \mathcal{L}$ and of the ultrasoft modes depends on the low energy dynamics.

A potential picture arises at the level of $p N R Q C D$:

- the potential is perturbative if $m v \gg \Lambda_{\mathrm{QCD}}$
- the potential is non-perturbative if $m v \sim \Lambda_{\mathrm{QCD}}$

$$
\mathcal{L}_{\mathrm{pNREFT}}=\int d^{3} r \phi^{\dagger}\left(i \partial_{0}-\frac{\mathbf{p}^{2}}{m}-V\right) \phi+\Delta \mathcal{L}
$$

- It is obtained by integrating out hard and soft gluons with p or E scaling like $m, m v$.
- The d.o.f. are $Q \bar{Q}$ pairs (sometimes cast in color singlet S and color octet O) and ultrasoft modes (e.g. light quarks, low-energy gluons):

in QCD another scale is relevant Λ_{QCD}

$\phi=S$

- The Lagrangian is organized as an expansion in $1 / m$ and r.
- The form of $\Delta \mathcal{L}$ and of the ultrasoft modes depends on the low energy dynamics.
-The leading picture is Schoedinger eq.,the potentials appear once all scales above the energy have been been integrated out
- non potential effects appear
as correction to the leading picture and are nonperturbative
- Any prediction of pNRQCD is a prediction of QCD at the given order of expansion
- Effects at the nonperturbative scale are carried by gauge invariant purely glue dependent correlators to be calculated on the lattice or in QCD vacuum models

A potential picture arises at the level of $p N R Q C D$: - the potential is perturbative if $m v \gg \Lambda_{\mathrm{QCD}}$ - the potential is non-perturbative if $m v \sim \Lambda_{\mathrm{QCD}}$

Weakly coupled pNRQCD

- If $m v \gg \Lambda_{\mathrm{QCD}}$, the matching is perturbative Non-analytic behaviour in $r \rightarrow$ matching coefficients V

The gauge fields are multipole expanded:
$A(R, r, t)=A(R, t)+\mathbf{r} \cdot \nabla A(R, t)+\ldots$
$\mathbf{R}=$ center of mass
$\mathbf{r}=Q \bar{Q}$ distance
$\mathcal{L}^{\mathrm{pNRQCD}}=\int d^{3} r \operatorname{Tr}\left\{S^{\dagger}\left(i \partial_{0}-\frac{\mathbf{p}^{2}}{m}-V_{S}+\cdots\right) S+O^{\dagger}\left(i D_{0}-\frac{\mathbf{p}^{2}}{m}-V_{O}+\cdots\right) O+\right.$ LO in r
$\left.+V_{A}\left(S^{\dagger} \mathbf{r} \cdot g \mathbf{E} O+O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S\right)+\frac{V_{B}}{2}\left(O^{\dagger} \mathbf{r} \cdot g \mathbf{E} O+O^{\dagger} O \mathbf{r} \cdot g \mathbf{E}\right)\right\}+\ldots$
$-\frac{1}{4} F_{\mu \nu}^{a} F^{\mu \nu a}+\sum_{i=1}^{n f} \bar{q}_{i} i \not D q_{i}$

- If $m v \gg \Lambda_{\mathrm{QCD}}$, the matching is perturbative Non-analytic behaviour in $r \rightarrow$ matching coefficients V

The gauge fields are multipole expanded:

$$
A(R, r, t)=A(R, t)+\mathbf{r} \cdot \nabla A(R, t)+\ldots
$$

$\mathbf{R}=$ center of mass
$\mathbf{r}=Q \bar{Q}$ distance

$$
\mathcal{L}^{\mathrm{pNRQCD}}=\int d^{3} r \operatorname{Tr}\left\{S^{\dagger}\left(i \partial_{0}-\frac{\mathbf{p}^{2}}{m}-V_{S}+\cdots\right) S+O^{\dagger}\left(i D_{0}-\frac{\mathbf{p}^{2}}{m}-V_{O}+\cdots\right) O+\text { LO in } r\right.
$$

$$
\left.+V_{A}\left(S^{\dagger} \mathbf{r} \cdot g \mathbf{E} O+O^{\dagger} \mathbf{r} \cdot g \mathbf{E} S\right)+\frac{V_{B}}{2}\left(O^{\dagger} \mathbf{r} \cdot g \mathbf{E} O+O^{\dagger} O \mathbf{r} \cdot g \mathbf{E}\right)\right\}+\ldots
$$

$$
-\frac{1}{4} F_{\mu \nu}^{a} F^{\mu \nu a}+\sum_{i=1}^{n_{f}} \bar{q}_{i} i \not D q_{i}
$$

The matching coefficients are the Coulomb potential

$$
V_{S}(r)=-C_{F} \frac{\alpha_{\mathrm{S}}}{r}+\ldots
$$

$$
V_{o}(r)=\frac{1}{2 N} \frac{\alpha_{\mathrm{s}}}{r}+\ldots
$$

Feynman rules

$$
\mid V_{A}=1+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right), V_{B}=1+\mathcal{O}\left(\alpha_{\mathrm{s}}^{2}\right)
$$

$$
=\theta(t) e^{-i t\left(\mathbf{p}^{2} / m+V\right)}
$$

$$
\overline{\underline{ }}=\theta(t) e^{-i t\left(\mathbf{p}^{2} / m+V_{o}\right)}\left(e^{-i \int d t A^{\mathrm{adj}}}\right)
$$

$$
\begin{aligned}
E_{n}=2 m & +\langle n| \frac{p^{2}}{m}+V_{s}|n\rangle+\langle n|-\overbrace{\Omega}^{\sigma^{6 m}}|n\rangle \\
E_{n} & =\langle n| H_{s}(\mu)|n\rangle-i \frac{g^{2}}{3 N_{c}} \int_{0}^{\infty} d t\langle n| \mathbf{r} e^{i t\left(E_{n}^{(0)}-H_{o}\right)} \mathbf{r}|n\rangle\langle\mathbf{E}(t) \xrightarrow[\mathbf{E}(0)\rangle(\mu)]{\sim e^{i \Lambda_{\mathrm{ecD}} t}}
\end{aligned}
$$

$E_{n}^{(0)}-H_{o} \gg \Lambda_{\mathrm{QCD}} \Rightarrow\langle\mathbf{E}(t) \mathbf{E}(0)\rangle(\mu) \rightarrow\left\langle\mathbf{E}^{2}(0)\right\rangle$ local condensates as predicted in a paper by Misha Voloshin in 1979
->used to extract precise (NNNLO) determination of m_c and m_b
$E_{n}^{(0)}-H_{o} \sim \Lambda_{\mathrm{QCD}} \Rightarrow$ no expansion possible, non-local condensates, analogous to the Lamb shift in QED

Applications of weakly coupled pNRQCD include:
Hbar production, quarkonia spectra, decays, El and Ml transitions, QQq and QQQ energies, thermal masses and potentials

Strongly coupled pNRQCD: Hitting the scale $\Lambda_{\mathrm{QCD}} \quad r \sim \Lambda_{Q C D}^{-1}$

The degrees of freedoms now are

with gluons at the scale
$\Lambda_{\mathrm{QCD}} \rightarrow$ nonperturbative problem, use lattice

Strongly coupled pNRQCD: Hitting the scale Λ_{QCD}

static energies $\mathrm{E}^{\wedge} 0 _n$ from Lattice

Λ

Irreducible representations of $D_{\infty h}$ σ

- \boldsymbol{K} : angular momentum of light d.o.f.

$$
\lambda=\hat{\boldsymbol{r}} \cdot \boldsymbol{K}=0, \pm 1, \pm 2, \pm 3, \ldots
$$

$$
\Lambda=|\lambda|=0,1,2,3, \ldots(\Sigma, \Pi, \Delta, \Phi, \ldots)
$$

- Eigenvalue of $C P: \eta=+1(g),-1(u)$
- σ : eigenvalue of relfection about a plane containi
K is the angular momentum of the light degrees of freedom;same symmetry as the diatomic molecule

$$
\begin{aligned}
& \left.\mathcal{H}^{(0)}\left|\underline{n} ; \mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle^{(0)}=E_{n}^{(0)}\left(\mathbf{x}_{1}, \mathbf{x}_{2}\right) \nsim ; \mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle^{(0)} \\
& \left|\underline{n} ; \mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle^{(0)}=\psi^{\dagger}\left(\mathbf{x}_{1}\right) \chi\left(\mathbf{x}_{2}\right)\left|n ; \mathbf{x}_{1}, \mathbf{x}_{2}\right\rangle^{(0)}
\end{aligned}
$$

$\left|\underline{0} ; \mathbf{x}_{1} \mathbf{x}_{2}\right\rangle->\quad\left|(Q \bar{Q})_{1}\right\rangle \rightarrow$ Quarkonium Singlet pNRQCD states
$\left|\underline{n}>0 ; \mathbf{x}_{1} \mathbf{x}_{2}\right\rangle->\left|(Q \bar{Q}) g^{(n)}\right\rangle \rightarrow$ Higher Gluonic Excitations

Bali et al. $98 \quad m v \sim \Lambda_{Q C D} \cdot p N R Q C D$ and the potentials come from integrating out all scales up to $m v^{2}$

- A pure potential description emerges from the EFT however this is not the constituent quark model, alphas and masses are the QCD fundamental parameters
- The potentials $V=\operatorname{Re} V+I m V$ from QCD in the matching: get spectra and decays
- We obtain the form of the nonperturbative potentials V in terms of generalized Wilson loops (stat that are low energy pure gluonic correlators: all the flavour dependence is pulled out

The singlet potential has the general structure
the fact that spin dependent corrections appear at order $1 / \mathrm{m}^{\wedge} 2$ is called Heavy Quark Spin Symmetry

$$
V=V_{\text {static }}^{V_{0}}+\frac{1}{m} V_{1}+\frac{1}{m^{2}}\left(V_{\text {spin dependent }}+V_{V D}\right)
$$

The singlet potential has the general structure

the fact that spin dependent corrections appear at order $1 / \mathrm{m}^{\wedge} 2$ is called Heavy Quark Spin Symmetry

$$
V=V_{0}+\frac{1}{m} V_{1}+\frac{1}{m^{2}}\left(V_{S D}+V_{V D}\right)
$$

$$
\begin{aligned}
& -\frac{r^{k}}{r^{2}}\left(\left.c_{F} \epsilon^{k i j} i \int_{0}^{\infty} d t t\left\langle\lceil\mathbf{i} \mathbf{j}\rangle-\frac{2 c_{F}-1}{2} \nabla^{k} V^{(0)}\right) \mathbf{L}_{1} \cdot \mathbf{S}_{1}+(1 \leftrightarrow 2) \right\rvert\, V_{L S}^{(1)}\right. \\
& \left.-c_{F}^{2} \hat{r}_{i} \hat{r}_{j} i \int_{0}^{\infty} d t\left(\left\langle\square^{\text {in }}{ }^{\mathbf{j}}\right\rangle-\frac{\delta_{i j}}{3}\langle\square\rangle\right)\left(\mathbf{S}_{1} \cdot \mathbf{S}_{\mathbf{2}}-3\left(\mathbf{S}_{1} \cdot \hat{\mathbf{r}}\right)\left(\mathbf{S}_{\mathbf{2}} \cdot \hat{\mathbf{r}}\right)\right) \right\rvert\, V_{T} \\
& \left.+\left(\frac{2}{3} c_{F}^{2} i \int_{0}^{\infty} d t\langle\square\rangle-4\left(d_{s v}+\frac{4}{3} d_{v v}\right) \delta^{(3)}(\mathbf{r})\right) \mathbf{S}_{1} \cdot \mathbf{S}_{\mathbf{2}} \right\rvert\, V_{S} \\
& \left.c_{F}=1+\alpha_{\mathrm{s}} / \pi(13 / 6+3 / 2 \ln m / \mu)+\ldots\right), d_{s v, v v}=O\left(\alpha_{\mathrm{s}}^{2}\right) \text { from NRQCD. }
\end{aligned}
$$

The singlet potential has the general structure
the fact that spin dependent corrections appear at order $1 / \mathrm{m}^{\wedge} 2$ is called Heavy Quark Spin Symmetry

$$
V=V_{0}+\frac{1}{m} V_{1}+\frac{1}{m^{2}}\left(V_{S D}+V_{V D}\right)
$$

$$
\begin{aligned}
& \left.-\frac{r^{k}}{r^{2}}\left(c_{F} \epsilon^{k i j} i \int_{0}^{\infty} d t t\langle\lcm{\mathbf{i}-\mathbf{j}}\rangle-\frac{2 c_{F}-1}{2} \nabla^{k} V^{(0)}\right) \mathbf{L}_{1} \cdot \mathbf{S}_{1}+(1 \leftrightarrow 2) \right\rvert\, V_{L S}^{(1)} \\
& \left.-c_{F}^{2} \hat{r}_{i} \hat{r}_{j} i \int_{0}^{\infty} d t\left(\left\langle\underset{\mathbf{i}^{\mathrm{j}}}{ }\right\rangle-\frac{\delta_{i j}}{3}\langle\square\rangle\right)\left(\mathbf{S}_{1} \cdot \mathbf{S}_{\mathbf{2}}-3\left(\mathbf{S}_{1} \cdot \hat{\mathbf{r}}\right)\left(\mathbf{S}_{\mathbf{2}} \cdot \hat{\mathbf{r}}\right)\right) \right\rvert\, V_{T} \\
& \left.+\left(\frac{2}{3} c_{F}^{2} i \int_{0}^{\infty} d t\langle\square\rangle-4\left(d_{s v}+\frac{4}{3} d_{v v}\right) \delta^{(3)}(\mathbf{r})\right) \mathbf{S}_{1} \cdot \mathbf{S}_{\mathbf{2}} \right\rvert\, V_{S} \\
& \left.c_{F}=1+\alpha_{\mathrm{s}} / \pi(13 / 6+3 / 2 \ln m / \mu)+\ldots\right), d_{s v, v v}=O\left(\alpha_{\mathrm{s}}^{2}\right) \text { from NRQCD. }
\end{aligned}
$$

the potentials contain the contribution of the scale m inherited from NRQCD matching coefficients—> they cancel any QM divergences, good UV behaviour

- the nonperturbative part is factorized and depends only on the glue $->$ only one lattice calculation to get the dynamics and the observables instead of an ab initio calculation of multiple Green functions
pNRQCD can describe also quarkonium production and, together with open quantum systems, the nonequilibrium evolution of quarkonium in medium (in heavy ions)
—> which has implications on the fact that BOEFT could do the same
$X Y Z$: close or above the quarkonium strong decay threshold

X Y Z : close or above the quarkonium strong decay threshold
the situation is much more complicate

X Y Z : close or above the quarkonium strong decay threshold
the situation is much more complicate
there is no mass gap between quarkonium and the creation of a heavy-light mesons couple, nor to gluon excitations and many additional states built on the light quark quantum numbers may appear
$X Y Z$: close or above the quarkonium strong decay threshold
the situation is much more complicate
there is no mass gap between quarkonium and the creation of a heavy-light mesons couple, nor to gluon excitations and many additional states built on the light quark quantum numbers may appear
many different configurations may appear

hybrid

diquark-diquark

adjoint tetraquark

heavy meson molecule
depending on the underlying QCD dynamics
$X Y Z$: close or above the quarkonium strong decay threshold
the situation is much more complicate
there is no mass gap between quarkonium and the creation of a heavy-light mesons couple, nor to gluon excitations and many additional states built on the light quark quantum numbers may appear
many different configurations may appear

hybrid

diquark-diquark

adjoint tetraquark

heavy meson molecule
depending on the underlying QCD dynamics

Still: m is the bigger scale \longrightarrow NRQCD is still valid

BOEFT: EFT for nonrelativistic pairs and light d.o.f.

Consider bound states of two nonrelativistic particles and some light d.o.f., e.g., molecules/quarkonium hybrids ($Q \bar{Q} g$ states) or tetraquarks ($Q \bar{Q} q \bar{q}$ states):

- electron/gluon fields change adiabatically in the presence of heavy quarks/nuclei. The heavy quarks/nuclei interaction may be described at leading order in the non-relativistic expansion by an effective potential V_{κ} between static sources, where κ labels different excitations of the light d.o.f.
- a plethora of states can be built on each of the potentials V_{κ} by solving the corresponding Schrödinger equation.

This picture goes also under the name of Born-Oppenheimer approximation. Starting from pNRQED/pNRQCD the Born-Oppenheimer approximation can be made rigorous and cast into a suitable nonrelativistic EFT called Born-Oppenheimer EFT (BOEFT).


```
    Lattice evaluation of the QCD static energies:
                    Michael et al. 1983,
                            Juge, Kuti, Mornigstar 1997, 1998,
Bali Pineda 2004, Capitani, Philipsen, Reisinger,
                    Riehl, Wagner 2018
Braaten PRL 111 (2013) 162003
Braaten Langmack Smith PRD 90 (2014) 014044
```


Focus on hybrids

two different scales

$\Lambda_{\mathrm{QCD}} \gg m v^{2}$
we proceed to integrate out $1 / r$ and then Λ_{QCD} (or simultaneously see Soto, Tarrus)
-2005.00552
analogous to
$E_{\text {electrons }} \gg E_{\text {nuclei }}$ in QED

Focus on hybrids

$E_{\text {heavy }} \sim \mathrm{m}_{\mathrm{Q}} \mathrm{v}^{2} \quad \mathrm{E}_{\text {light }} \sim \Lambda_{\mathrm{QCD}}$

two different scales

$\Lambda_{\mathrm{QCD}} \gg m v^{2}$
we proceed to integrate out $1 / r$ and then Λ_{QCD} (or simultaneously see Soto, Tarrus)
-2005.00552
analogous to
$E_{\text {electrons }} \gg E_{\text {nuclei }}$ in QED
Λ_{QCD} is nonperturbative but we can
use the lattice to calculate the appropriate gluonic static energies (corresponding in molecular physics to the electronic static energies)

Focus on hybrids

We need the static
 energies for the lattice

$$
\begin{aligned}
E_{n}^{(0)}(r) & =\lim _{T \rightarrow \infty} \frac{i}{T} \log \left\langle X_{n}, T / \overrightarrow{2\left|X_{n},-T / 2\right\rangle}\right. \text { wilson loop } \\
\left|X_{n}\right\rangle & =\chi\left(\mathbf{x}_{\mathbf{2}}\right) \phi\left(\mathbf{x}_{\mathbf{2}}, \mathbf{R}\right) T^{a} H^{a}(\mathbf{R}) \phi\left(\mathbf{R}, \mathbf{x}_{1}\right) \psi^{\dagger}\left(\mathbf{x}_{\mathbf{1}}\right)|\mathrm{vac}\rangle
\end{aligned}
$$

Phi wilson lines and H gluonic operator with

We understand the static energies \longrightarrow

The BOEFT characterises the hybrids static energy for short distance In the short-range hybrids become gluelumps, i.e., quark-antiquark octets, O^{a}, in the presence of a gluonic field, $H^{a}: H(R, r, t)=H^{a}(R, t) O^{a}(R, r, t)$.

a_{g} can be expressed as field correlators (single line = singlet, double line = octet), e.g.,

$$
E_{g}=\frac{\alpha_{\mathrm{s}}}{6 r}+\Lambda_{g}+a_{g}{r^{2}+\ldots}^{\text {octet potential }} \text { non perturbative coefficient }
$$

Λ_{g} is the gluelump mass: $\quad \Lambda_{g}=\lim _{T \rightarrow \infty} \frac{i}{T} \ln \left\langle H^{a}(T / 2) \phi_{a b}^{\mathrm{adj}}(T / 2,-T / 2) H^{b}(-T / 2)\right\rangle$ calculated on the lattice

Foster Michael PRD 59 (1999) 094509
Bali Pineda PRD 69 (2004) 094001
Lewis Marsh PRD 89 (2014) 014502
the hybrid ' static energy can be written as a (multipole) expansion in r :

Gluonic excitation operators up to $\operatorname{dim} 3$

Λ_{η}^{σ}	$K^{p C}$	H^{a}
Σ_{u}^{-}	1^{+-}	$\mathbf{r} \cdot \mathbf{B}, \mathbf{r} \cdot(\mathbf{D} \times \mathbf{E})$
Π_{u}	1^{+-}	$\mathbf{r} \times \mathbf{B}, \mathbf{r} \times(\mathbf{D} \times \mathbf{E})$
$\Sigma_{g}^{+\theta^{\prime}}$	1^{--}	$\mathbf{r} \cdot \mathbf{E}, \mathbf{r} \cdot(\mathbf{D} \times \mathbf{B})$
Π_{g}	1^{--}	$\mathbf{r} \times \mathbf{E}, \mathbf{r} \times(\mathbf{D} \times \mathbf{B})$
Σ_{g}^{-}	2^{--}	$(\mathbf{r} \cdot \mathbf{D})(\mathbf{r} \cdot \mathbf{B})$
Π_{g}^{\prime}	2^{--}	$\mathbf{r} \times((\mathbf{r} \cdot \mathbf{D}) \mathbf{B}+\mathbf{D}(\mathbf{r} \cdot \mathbf{B}))$
Δ_{g}	2^{--}	$(\mathbf{r} \times \mathbf{D})^{i}(\mathbf{r} \times \mathbf{B})^{j}+(\mathbf{r} \times \mathbf{D})^{i}(\mathbf{r} \times \mathbf{B})^{i}$
Σ_{u}^{+}	2^{2+-}	$(\mathbf{r} \cdot \mathbf{D})(\mathbf{r} \cdot \mathbf{E})$
Π_{u}^{\prime}	2^{+-}	$\mathbf{r} \times((\mathbf{r} \cdot \mathbf{D}) \mathbf{E}+\mathbf{D}(\mathbf{r} \cdot \mathbf{E}))$
Δ_{u}	2^{+-}	$(\mathbf{r} \times \mathbf{D})^{i}(\mathbf{r} \times \mathbf{E})^{i}+(\mathbf{r} \times \mathbf{D})^{i}(\mathbf{r} \times \mathbf{E})^{i}$

The gluelump multiplets $\Sigma_{u}^{-}, \Pi_{u} ; \Sigma_{g}^{+\prime}, \Pi_{g} ; \Sigma_{g}^{-}, \Pi_{g}^{\prime}, \Delta_{g} ; \Sigma_{u}^{+}, \Pi_{u}^{\prime}, \Delta_{u}$ are degenerate.

We understand the static energies \longrightarrow

The BOEFT characterises the hybrids static energy for short distance In the short-range hybrids become gluelumps, i.e., quark-antiquark octets, O^{a}, in the presence of a gluonic field, $H^{a}: H(R, r, t)=H^{a}(R, t) O^{a}(R, r, t)$.

a_{g} can be expressed as field correlators (single line = singlet, double line = octet), e.g.,
the hybrid ' static energy can be written as a (multipole) expansion in r :
> octet potential

$$
E_{g}=\frac{\alpha_{\mathrm{s}}}{6 r}+\Lambda_{g}+a_{g} r^{2}+\ldots \text { non perturbative coefficient }
$$

Λ_{g} is the gluelump mass: $\quad \Lambda_{g}=\lim _{T \rightarrow \infty} \frac{i}{T} \ln \left\langle H^{a}(T / 2) \phi_{a b}^{\mathrm{adj}}(T / 2,-T / 2) H^{b}(-T / 2)\right\rangle$ calculated on the lattice

Foster Michael PRD 59 (1999) 094509
Bali Pineda PRD 69 (2004) 094001
Lewis Marsh PRD 89 (2014) 014502

Gluonic excitation operators up to dim 3

Λ_{η}^{σ}	$K^{p C}$	H^{a}
Σ_{u}^{-}	1^{+-}	$\mathbf{r} \cdot \mathbf{B}, \mathbf{r} \cdot(\mathbf{D} \times \mathbf{E})$
Π_{u}	1^{+-}	$\mathbf{r} \times \mathbf{B}, \mathbf{r} \times(\mathbf{D} \times \mathbf{E})$
$\Sigma_{g}^{+\theta^{\prime}}$	1^{--}	$\mathbf{r} \cdot \mathbf{E}, \mathbf{r} \cdot(\mathbf{D} \times \mathbf{B})$
Π_{g}	1^{--}	$\mathbf{r} \times \mathbf{E}, \mathbf{r} \times(\mathbf{D} \times \mathbf{B})$
Σ_{g}^{-}	2^{--}	$(\mathbf{r} \cdot \mathbf{D})(\mathbf{r} \cdot \mathbf{B})$
Π_{g}^{\prime}	2^{--}	$\mathbf{r} \times((\mathbf{r} \cdot \mathbf{D}) \mathbf{B}+\mathbf{D}(\mathbf{r} \cdot \mathbf{B}))$
Δ_{g}	2^{--}	$(\mathbf{r} \times \mathbf{D})^{i}(\mathbf{r} \times \mathbf{B})^{j}+(\mathbf{r} \times \mathbf{D})^{i}(\mathbf{r} \times \mathbf{B})^{i}$
Σ_{u}^{+}	2^{2+-}	$(\mathbf{r} \cdot \mathbf{D})(\mathbf{r} \cdot \mathbf{E})$
Π_{u}^{\prime}	2^{+-}	$\mathbf{r} \times((\mathbf{r} \cdot \mathbf{D}) \mathbf{E}+\mathbf{D}(\mathbf{r} \cdot \mathbf{E}))$
Δ_{u}	2^{+-}	$(\mathbf{r} \times \mathbf{D})^{i}(\mathbf{r} \times \mathbf{E})^{i}+(\mathbf{r} \times \mathbf{D})^{i}(\mathbf{r} \times \mathbf{E})^{i}$

The gluelump multiplets $\Sigma_{u}^{-}, \Pi_{u} ; \Sigma_{g}^{+\prime}, \Pi_{g} ; \Sigma_{g}^{-}, \Pi_{g}^{\prime}, \Delta_{g} ; \Sigma_{u}^{+}, \Pi_{u}^{\prime}, \Delta_{u}$ are degenerate.

Hybrids Multiplets

We consider hybrids that are excitations of the lowest lying static energies Π_{u} and Σ_{u}^{-}. In the $r \rightarrow 0$ limit Π_{u} and Σ_{u}^{-}are degenerate and correspond to a gluonic operator with quantum numbers 1^{+-}.

Multiplet	T	$J^{P C}(S=0)$	$J^{P C}(S=1)$	E_{Γ}
H_{1}	1	1^{--}	$(0,1,2)^{-+}$	$E_{\Sigma_{u}^{-}}, E_{\Pi_{u}}$
H_{2}	1	1^{++}	$(0,1,2)^{+-}$	$E_{\Pi_{u}}$
H_{3}	0	0^{++}	1^{+-}	$E_{\Sigma_{u}^{-}}$
H_{4}	2	2^{++}	$(1,2,3)^{+-}$	$E_{\Sigma_{u}^{-}}, E_{\Pi_{u}}$

> the J^PCquantum numbers come from the properties of the solution of the coupled Schroedinger eqs. in BOEFT
T is the sum of the orbital angular momentum of the quark-antiquark pair and the We do not consider the quark spin gluonic angular momentum; $T=0$ state turns out not to be the lowest mass state. here so $\mathrm{S}=0$ and 1 are degenerated

Hybrids Multiplets

We consider hybrids that are excitations of the lowest lying static energies Π_{u} and Σ_{u}^{-}. In the $r \rightarrow 0$ limit Π_{u} and Σ_{u}^{-}are degenerate and correspond to a gluonic operator with quantum numbers 1^{+-}.

Multiplet	T	$J^{P C}(S=0)$	$J^{P C}(S=1)$	E_{Γ}
H_{1}	1	1^{--}	$(0,1,2)^{-+}$	$E_{\Sigma_{u}^{-}}, E_{\Pi_{u}}$
H_{2}	1	1^{++}	$(0,1,2)^{+-}$	$E_{\Pi_{u}}$
H_{3}	0	0^{++}	1^{+-}	$E_{\Sigma_{u}^{-}}$
H_{4}	2	2^{++}	$(1,2,3)^{+-}$	$E_{\Sigma_{u}^{-}}, E_{\Pi_{u}}$

the J^PCquantum numbers come from the properties of the solution of the coupled Schroedinger eqs. in BOEFT
T is the sum of the orbital angular momentum of the quark-antiquark pair and the We do not consider the quark spin gluonic angular momentum; $T=0$ state turns out not to be the lowest mass state. here so $\mathrm{S}=0$ and 1 are degenerated
models may have a different multiplets structure: for example constituent gluon picture: quantum numbers obtained adding gluon and heavy quarks angular momentum-> larger multiplets

Hybrids Multiplets

We consider hybrids that are excitations of the lowest lying static energies Π_{u} and Σ_{u}^{-}. In the $r \rightarrow 0$ limit Π_{u} and Σ_{u}^{-}are degenerate and correspond to a gluonic operator with quantum numbers 1^{+-}.

Multiplet	T	$J^{P C}(S=0)$	$J^{P C}(S=1)$	E_{Γ}
H_{1}	1	1^{--}	$(0,1,2)^{-+}$	$E_{\Sigma_{u}^{-}}, E_{\Pi_{u}}$
H_{2}	1	1^{++}	$(0,1,2)^{+-}$	$E_{\Pi_{u}}$
H_{3}	0	0^{++}	1^{+-}	$E_{\Sigma_{u}^{-}}$
H_{4}	2	2^{++}	$(1,2,3)^{+-}$	$E_{\Sigma_{u}^{-}}, E_{\Pi_{u}}$

the J^PCquantum numbers come from the properties of the solution of the coupled Schroedinger eqs. in BOEFT
T is the sum of the orbital angular momentum of the quark-antiquark pair and the We do not consider the quark spin gluonic angular momentum; $T=0$ state turns out not to be the lowest mass state. here so $\mathrm{S}=0$ and 1 are degenerated
models may have a different multiplets structure: for example constituent gluon picture: quantum numbers obtained adding gluon and heavy quarks angular momentum-> larger multiplets

$$
P_{\kappa \lambda}^{i \dagger} O^{a}(\mathbf{r}, \mathbf{R}, t) H_{\kappa}^{i a}(\mathbf{R}, t)=Z_{\kappa} \Psi_{\kappa \lambda}(\mathbf{r}, \mathbf{R}, t)
$$

BOEFT for $E_{\Pi_{u}}$ and $E_{\Sigma_{u}^{-}}$hybrids

$$
\mathcal{L}_{\text {BOEFT tor } 1+-}=\int d^{3} r \sum_{\lambda \lambda^{\prime}} \operatorname{Tr}\left\{\Psi_{1+-\lambda}^{\dagger}\left(i \partial_{0}-V_{1+-\lambda \lambda^{\prime}}(r)+\hat{r}_{\lambda}^{i \dagger} \frac{\nabla_{r}^{2}}{m} \hat{r}_{\lambda^{\prime}}^{i}\right) \Psi_{1+-\lambda^{\prime}}\right\}
$$

- $\lambda= \pm 1,0 ; \quad \hat{r}_{0}^{i}=\hat{r}^{i}$ and $\hat{r}_{ \pm 1}^{i}=\mp\left(\hat{\theta}^{i} \pm i \hat{\phi}^{i}\right) / \sqrt{2}$.
- $V_{1+-\lambda \lambda^{\prime}}=V_{1+-\lambda \lambda^{\prime}}^{(0)}+\frac{V_{1+-\lambda \lambda^{\prime}}^{(1)}}{m}+\frac{V_{1+-\lambda \lambda^{\prime}}^{(2)}}{m^{2}}+\cdots$
- For the static potential: $V_{1+-\lambda \lambda^{\prime}}^{(0)}=\delta_{\lambda \lambda^{\prime}} V_{1+-\lambda}^{(0)}$, with $V_{1+-0}^{(0)}=E_{\Sigma_{u}^{-}}, V_{1+ - \pm 1}^{(0)}=E_{\Pi_{u}}$,
fitted from the lattice hybrids static energies

BOEFT for $E_{\Pi_{u}}$ and $E_{\Sigma_{u}^{-}}$hybrids

o Berwein Brambilla Tarrus Vairo PRD 92 (2015) 114019 Oncala Soto PRD 96 (2017) 014004

$$
\mathcal{L}_{\mathrm{BOEFT} \text { for } 1+-}=\int d^{3} r \sum_{\lambda \lambda^{\prime}} \operatorname{Tr}\left\{\Psi_{1+-\lambda}^{\dagger}\left(i \partial_{0}-V_{1+-\lambda \lambda^{\prime}}(r)+\hat{r}_{\lambda}^{i \dagger} \frac{\nabla_{r}^{2}}{m} \hat{r}_{\lambda^{\prime}}^{i}\right) \Psi_{1+-\lambda^{\prime}}\right\}
$$

- $\lambda= \pm 1,0 ; \quad \hat{r}_{0}^{i}=\hat{r}^{i}$ and $\hat{r}_{ \pm 1}^{i}=\mp\left(\hat{\theta}^{i} \pm i \hat{\phi}^{i}\right) / \sqrt{2}$.
- $V_{1+-\lambda \lambda^{\prime}}=V_{1+-\lambda \lambda^{\prime}}^{(0)}+\frac{V_{1+-\lambda \lambda^{\prime}}^{(1)}}{m}+\frac{V_{1+-\lambda \lambda^{\prime}}^{(2)}}{m^{2}}+\cdots$
- For the static potential: $V_{1+-\lambda \lambda^{\prime}}^{(0)}=\delta_{\lambda \lambda^{\prime}} V_{1+-\lambda}^{(0)}$, with $V_{1+-0}^{(0)}=E_{\Sigma_{u}^{-}}, V_{1+ - \pm 1}^{(0)}=E_{\Pi_{u}} .4$ fitted from the lattice h

The LO e.o.m. for the fields $\Psi_{1+-\lambda}^{\dagger}$ are a set of coupled Schrödinger equations:

$$
i \partial_{0} \Psi_{1+-\lambda}=\left[\left(-\frac{\boldsymbol{\nabla}_{r}^{2}}{m}+V_{1+-\lambda}^{(0)}\right) \delta_{\lambda \lambda^{\prime}}-\sum_{\lambda^{\prime}} C_{1+-\lambda \lambda^{\prime}}^{\mathrm{nad}}\right] \Psi_{\kappa \lambda^{\prime}}
$$

The eigenvalues \mathcal{E}_{N} give the masses M_{N} of the states as $M_{N}=2 m+\mathcal{E}_{N}$.

$$
\hat{r}_{\lambda}^{i \dagger}\left(\frac{\boldsymbol{\nabla}_{r}^{2}}{m}\right) \hat{r}_{\lambda^{\prime}}^{i}=\delta_{\lambda \lambda^{\prime}} \frac{\boldsymbol{\nabla}_{r}^{2}}{m}+C_{1+-\lambda \lambda^{\prime}}^{\mathrm{nad}}
$$

with $C_{1+-\lambda \lambda^{\prime}}^{\mathrm{nad}}=\hat{r}_{\lambda}^{i \dagger}\left[\frac{\nabla_{r}^{2}}{m}, \hat{r}_{\lambda^{\prime}}^{i}\right]$ called the nonadiabatic coupling.

BOEFT for $E_{\Pi_{u}}$ and $E_{\Sigma_{u}^{-}}$hybrids

- Berwein Brambilla Tarrus Vairo PRD 92 (2015) 114019 Oncala Soto PRD 96 (2017) 014004

$$
\mathcal{L}_{\text {BOEFT for } 1+-}=\int d^{3} r \sum_{\lambda \lambda^{\prime}} \operatorname{Tr}\left\{\Psi_{1+-\lambda}^{\dagger}\left(i \partial_{0}-V_{1+-\lambda \lambda^{\prime}}(r)+\hat{r}_{\lambda}^{i \dagger} \frac{\boldsymbol{\nabla}_{r}^{2}}{m} \hat{r}_{\lambda^{\prime}}^{i}\right) \Psi_{1^{+-\lambda^{\prime}}}\right\}
$$

- $\lambda= \pm 1,0 ; \quad \hat{r}_{0}^{i}=\hat{r}^{i}$ and $\hat{r}_{ \pm 1}^{i}=\mp\left(\hat{\theta}^{i} \pm i \hat{\phi}^{i}\right) / \sqrt{2}$.
- $V_{1+-\lambda \lambda^{\prime}}=V_{1+-\lambda \lambda^{\prime}}^{(0)}+\frac{V_{1+-\lambda \lambda^{\prime}}^{(1)}}{m}+\frac{V_{1+-\lambda \lambda^{\prime}}^{(2)}}{m^{2}}+\cdots$
fitted from the lattice hybrids
For the static potential: $V_{1^{+}-\lambda \lambda^{\prime}}^{(0)}=\delta_{\lambda \lambda^{\prime}} V_{1+-\lambda}^{(0)}$, with $V_{1+-0}^{(0)}=E_{\Sigma_{u}^{-}}, V_{1^{+}- \pm 1}^{(0)}=E_{\Pi_{u}}$.

$$
\left[-\frac{1}{m r^{2}} \partial_{r} r^{2} \partial_{r}+\frac{1}{m r^{2}}\left(\begin{array}{cc}
l(l+1)+2 & 2 \sqrt{l(l+1)} \\
2 \sqrt{l(l+1)} & l(l+1)
\end{array}\right)+\left(\begin{array}{cc}
E_{\Sigma}^{(0)} & 0 \\
0 & E_{\Pi}^{(0)}
\end{array}\right)\right]\binom{\psi_{\Sigma}^{(N)}}{\psi_{-\Pi}^{(N)}}=\mathcal{E}_{N}\binom{\psi_{\Sigma}^{(N)}}{\psi_{-\Pi}^{(N)}}
$$

$$
\left[-\frac{1}{m r^{2}} \partial_{r} r^{2} \partial_{r}+\frac{l(l+1)}{m r^{2}}+E_{\Pi}^{(0)}\right] \psi_{+\Pi}^{(N)}=\mathcal{E}_{N} \psi_{+\Pi}^{(N)}
$$

Mixing remove the degeneration among opposite parity states: ->Lambda doubling

- $l(l+1)$ is the eigenvalue of angular momentum $\boldsymbol{L}^{2}=\left(\boldsymbol{L}_{Q \bar{Q}}+\boldsymbol{L}_{g}\right)^{2} \quad$ existing also in molecular physics
- the two solutions correspond to opposite parity states: $(-1)^{l}$ and $(-1)^{l+1}$
- corresponding eigenvalues under charge conjugation: $(-1)^{l+s}$ and $(-1)^{l+s+1}$

Spectrum: with mixing and Λ-doubling

The Schrödinger equation mixes states with the same parity.
A consequence is Λ-doubling, i.e., the lifting of degeneracy between states with opposite parity. This happens also in molecular physics, however, there Λ-doubling is a subleading effect, while it is a LO effect in the quarkonium hybrid spectrum.

- The eigenstates are organized in the multiplets H_{1}, H_{2}, \ldots. Neglecting off-diagonal terms, the multiplets H_{1} and H_{2} would be degenerate.
- We compute the spectrum using quark masses in the renormalon subtraction (RS) scheme: $m_{c} \mathrm{RS}=1.477(40) \mathrm{GeV}$ and $m_{b \mathrm{RS}}=4.863(55) \mathrm{GeV}$.

The gluelump masses, which enter in the normalization of the hybrid potentials, have been computed in the same scheme and assigned an uncertainty of +01.5 GeV which is the largest source of uncertainty in the hybrid masses.

Charmonium hybrid states vs direct lattice data

Lattice (crosses) confirms Lambda doubling (H_1 not degenerate with H_2)
Bands BOEFT predict -uncertainty comes from the uncertainty on the mass of the gluelump

```
O Berwein Brambilla Tarrus Vairo PRD 92 (2015) 114019
    lattice data from the Hadron Spectrum coll JHEP 1207 (2012) 126
    [2+1 flavors, m}=400 MeV
```


Quarkonium hybrid states vs experiments I

neutral isoscalar states in charmonium with matching quantum numbers

In the same way

- Berwein Brambilla Tarrus Vairo PRD 92 (2015) 114019 bottomonium and bchybrids updated in Brambilla Eidelman Hanhart Nefediev Shen multiplets are obtained, depend Thomas Vairo Yuan arXiv:1907.11747 on the same gluelump masses

Quarkonium hybrid states vs experiments I

neutral isoscalar states in charmonium with matching quantum numbers band in our H multiplet masses comes form the error on the
lattice calculation of the gluelump mass +-150 MeV : we need more precise lattice

In the same way

- Berwein Brambilla Tarrus Vairo PRD 92 (2015) 114019 bottomonium and bchybrids updated in Brambilla Eidelman Hanhart Nefediev Shen multiplets are obtained, depend Thomas Vairo Yuan arXiv:1907.11747

Quarkonium hybrid states vs experiments II

- Promising candidates for charmonium hybrids or for states with a large hybrid component are the $Y(4230)$ and $Y(4390)$ because of their significant width into $\pi^{+} \pi^{-} h_{c}$. This decay does not need spin flipping of the heavy quark-antiquark pair, which is in a spin zero state. Spin-flipping terms are suppressed in the heavy quark limit. Nevertheless, mixing with spin one quarkonium states happens already at order $\Lambda_{\mathrm{QCD}}^{2} / m_{h}$. This possibly large mixing may allow for significant widths also into final states with spin one quarkonia, in particular $\pi^{+} \pi^{-} J / \psi$.

```
o Oncala Soto PRD 96 (2017) 014004
```

- From the experimental side, candidate states of bottomonium hybrids in the H_{1} or H_{1}^{\prime} multiplets are the $\Upsilon(10860)$ [1^{--}], with a mass of
$M_{\Upsilon(10860)}=\left(10891.1 \pm 3.2_{-1.7}^{+0.6}\right) \mathrm{MeV}$ and the $\Upsilon(11020)\left[1^{--}\right]$, with a mass of \quad Tarrus Passemar 2104.03975
$M_{\Upsilon(11020)}=\left(10987.5_{-2.5}^{+6.4}{ }_{-2.0}^{9.0}\right) \mathrm{MeV} \quad$ studies transition of these states identified as
- Belle coll PRD 93 (2016) 011101 hybrids to quarkoniumin BOEFT—> results suggest 11020 being a hybrid
To these we can add the recently observed signal by Belle with a mass of $M_{\Upsilon(10750)}=\left(10752.7 \pm 5.9_{-1.1}^{+0.7}\right) \mathrm{MeV}$, which may also qualify as an H_{1} multiplet bottomonium hybrid candidate.
o Belle coll arXiv:1905.05521

besides the spectrum we need:

- relativistic corrections, especially spin dependent potentials
- mixing with quarkonium, decays and transitions: what is the width of these states?
- production
- nonequilibrium evolution of $X Y Z$ in medium

besides the spectrum we need:

- relativistic corrections, especially spin dependent potentials
- mixing with quarkonium, decays and transitions: what is the width of these states?
- production
- nonequilibrium evolution of $X Y Z$ in medium

BOEFT gives or has the potential to give all of that to us!

The BOEFT gives a prescription to calculate the hybrids spin dependent potentials at order $1 / \mathrm{m}$ and $1 / \mathrm{m}^{\wedge} 2$

1/m

$$
\begin{aligned}
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(1)}(\boldsymbol{r}) & =V_{S K}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S} \\
& +V_{S K b}(r)\left[\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda}^{\dagger}\right)\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S}+\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda}^{j \dagger}\right) \cdot \boldsymbol{S}\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda^{\prime}}\right)\right] \quad \\
S_{12}=12\left(\mathbf{S}_{1} \cdot \hat{\mathbf{r}}\right)\left(\mathbf{S}_{2} \cdot \hat{\mathbf{r}}\right)-4\left(\mathbf{S}_{1} \cdot \mathbf{S}_{2}\right) & \mathbf{S}=\mathbf{S}_{1}+\mathbf{S}_{2}
\end{aligned}
$$

$$
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(2)}(\boldsymbol{r})=V_{L S a}^{(2)}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{L} \hat{r}_{\lambda^{\prime}}^{i}\right) \cdot \boldsymbol{S}+V_{L S b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger}\left(L^{i} S^{j}+S^{i} L^{j}\right) \hat{r}_{\lambda^{\prime}}^{j}
$$

$$
+V_{S^{2}}^{(2)}(r) S^{2} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} a}^{(2)}(r) S_{12} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger} \hat{r}_{\lambda^{\prime}}^{j}\left(S_{1}^{i} S_{2}^{j}+S_{2}^{i} S_{1}^{j}\right)
$$

$\left(K^{i j}\right)^{k}=i \epsilon^{i k j}$ is the angular momentum of the spin one gluons $\quad \bar{L}$ is the orbital angular momentum of the heavy-quark-antiquark pair.

The BOEFT gives a prescription to calculate the hybrids spin dependent potentials at order $1 / \mathrm{m}$ and $1 / \mathrm{m}^{\wedge} 2$

1/m

$$
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(1)}(\boldsymbol{r})=V_{S K}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S}
$$

$$
+V_{S K b}(r)\left[\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda}^{\dagger}\right)\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S}+\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda}^{j \dagger}\right) \cdot \boldsymbol{S}\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda^{\prime}}\right)\right]
$$

$$
\mathbf{S}=\mathbf{S}_{1}+\mathbf{S}_{2}
$$

$$
\begin{equation*}
S_{12}=12\left(\mathbf{S}_{1} \cdot \hat{\mathbf{r}}\right) \tag{2}
\end{equation*}
$$

$$
\begin{aligned}
& V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(2)}(\boldsymbol{r})=V_{L S a}^{(2)}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{L} \hat{r}_{\lambda^{\prime}}^{i}\right) \cdot \boldsymbol{S}+V_{L S b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger}\left(L^{i} S^{j}+S^{i} L^{j}\right) \hat{r}_{\lambda^{\prime}}^{j} \\
& \quad+V_{S^{2}}^{(2)}(r) \boldsymbol{S}^{2} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} a}^{(2)}(r) S_{12} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger} \hat{r}_{\lambda^{\prime}}^{j}\left(S_{1}^{i} S_{2}^{j}+S_{2}^{i} S_{1}^{j}\right)
\end{aligned}
$$

Features:

- New spin structures with respect to the quarkonium case: all terms at order $1 / m$ and two terms at order $1 / \mathrm{m}^{\wedge} 2$

Differently from the quarkonium case, the hybrid potential gets a first contribution already at order $\Lambda_{\mathrm{QCD}}^{2} / m_{h}$. The corresponding operator does not contribute at LO to matrix elements of quarkonium states as its projection on quark-antiquark color singlet states vanishes. Hence, spin splittings are remarkably less suppressed in heavy quarkonium hybrids than in heavy quarkonia.

The BOEFT gives a prescription to calculate the hybrids spin dependent potentials at order $1 / \mathrm{m}$ and $1 / \mathrm{m}^{\wedge} 2$

1/m

$$
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(1)}(\boldsymbol{r})=V_{S K}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S}
$$

$$
+V_{S K b}(r)\left[\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda}^{\dagger}\right)\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S}+\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda}^{j \dagger}\right) \cdot \boldsymbol{S}\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda^{\prime}}\right)\right]
$$

$$
\mathbf{S}=\mathbf{S}_{1}+\mathbf{S}_{2}
$$

$$
\begin{equation*}
S_{12}=12\left(\mathbf{S}_{1} \cdot \hat{\mathbf{r}}\right) \tag{2}
\end{equation*}
$$

$$
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(2)}(\boldsymbol{r})=V_{L S a}^{(2)}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{L} \hat{r}_{\lambda^{\prime}}^{i}\right) \cdot \boldsymbol{S}+V_{L S b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger}\left(L^{i} S^{j}+S^{i} L^{j}\right) \hat{r}_{\lambda^{\prime}}^{j}
$$

$$
+V_{S^{2}}^{(2)}(r) \boldsymbol{S}^{2} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} a}^{(2)}(r) S_{12} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger} \hat{r}_{\lambda^{\prime}}^{j}\left(S_{1}^{i} S_{2}^{j}+S_{2}^{i} S_{1}^{j}\right)
$$

$\overline{\left(K^{i j}\right)^{k}=i \epsilon^{i k j} \text { is the angular momentum of the spin one gluons } \quad \quad \bar{L} \text { is the orbital angular momentum of the heavy-quark-antiquark pair. } \quad \check{\prime} \text {. } \quad \text {. }}$

Features:

- New spin structures with respect to the quarkonium case: all terms at order $1 / \mathrm{m}$ and two terms at order $1 / \mathrm{m}^{\wedge} 2$

Differently from the quarkonium case, the hybrid potential gets a first contribution already at order $\Lambda_{\mathrm{QCD}}^{2} / m_{h}$. The corresponding operator does not contribute at LO to matrix elements of quarkonium states as its projection on quark-antiquark color singlet states vanishes. Hence, spin splittings are remarkably less suppressed in heavy quarkonium

Mixing with quarkonium via spin may also enhanced and decay to different spin states may be enhanced hybrids than in heavy quarkonia.

Hybrid spin dependent potentials at order $1 / \mathrm{m}$ and $1 / \mathrm{m}^{\wedge} 2$
1/m

$$
\begin{aligned}
& V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(1)}(\boldsymbol{r})=V_{S K}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S} \\
& +V_{S K b}(r)\left[\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda}^{\dagger}\right)\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}\right) \cdot \boldsymbol{S}+\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda}^{j \dagger}\right) \cdot \boldsymbol{S}\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda^{\prime}}\right)\right] \quad \mathbf{S}=\mathbf{S}_{1}+\mathbf{S}_{2} \\
& S_{12}=12\left(\mathbf{S}_{1} \cdot \hat{\mathbf{r}}\right)\left(\mathbf{S}_{2} \cdot \hat{\mathbf{r}}\right)-4\left(\mathbf{S}_{1} \cdot \mathbf{S}_{2}\right)
\end{aligned}
$$

$$
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(2)}(\boldsymbol{r})=V_{L S a}^{(2)}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{L}_{\lambda_{\lambda^{\prime}}^{i}}^{i}\right) \cdot \boldsymbol{S}+V_{L S b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger}\left(L^{i} S^{j}+S^{i} L^{j}\right) \hat{r}_{\lambda^{\prime}}^{j}
$$

$1 / \mathrm{m}^{\wedge} 2$

$$
+V_{S^{2}}^{(2)}(r) S^{2} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} a}^{(2)}(r) S_{12} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger} \hat{r}_{\lambda^{\prime}}^{j}\left(S_{1}^{i} S_{2}^{j}+S_{2}^{i} S_{1}^{j}\right)
$$

$\left(K^{i j}\right)^{k}=i \epsilon^{i k j}$ is the angular momentum of the spin one gluons $\quad L$ is the orbital angular momentum of the heavy-quark-antiquark pair.

Features:

Hybrid spin dependent potentials at order $1 / \mathrm{m}$ and $1 / \mathrm{m}^{\wedge} 2$
1/m

$$
\begin{aligned}
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(1)}(\boldsymbol{r}) & =V_{S K}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S} \\
& +V_{S K b}(r)\left[\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda}^{\dagger}\right)\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S}+\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda}^{j \dagger}\right) \cdot \boldsymbol{S}\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda^{\prime}}\right)\right] \quad S_{12}=12\left(\mathbf{S}_{1} \cdot \hat{\mathbf{r}}\right)\left(\mathbf{S}_{2} \cdot \hat{\mathbf{r}}\right)-4\left(\mathbf{S}_{1} \cdot \mathbf{S}_{2}\right)
\end{aligned}
$$

$$
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(2)}(\boldsymbol{r})=V_{L S a}^{(2)}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{L} \hat{r}_{\lambda^{\prime}}^{i}\right) \cdot \boldsymbol{S}+V_{L S b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger}\left(L^{i} S^{j}+S^{i} L^{j}\right) \hat{r}_{\lambda^{\prime}}^{j}
$$

$1 / m^{\wedge} 2$

$$
+V_{S^{2}}^{(2)}(r) \boldsymbol{S}^{2} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} a}^{(2)}(r) S_{12} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger} \hat{r}_{\lambda^{\prime}}^{j}\left(S_{1}^{i} S_{2}^{j}+S_{2}^{i} S_{1}^{j}\right)
$$

$\left(K^{i j}\right)^{k}=i \epsilon^{i k j}$ is the angular momentum of the spin one gluons $\quad L$ is the orbital angular momentum of the heavy-quark-antiquark pair.
Features:
The nonperturbative part in V_i (r) depend on nonperturbative gluonic correlators non local in time not yet calculated on the lattice: six unknowns, the octet perturbative part can be calculated in perturbation theory

- The only flavor dependence is carried by the perturbative NRQCD matching coefficients

Hybrid spin dependent potentials at order $1 / \mathrm{m}$ and $1 / \mathrm{m}^{\wedge} 2$

1/m

$$
\begin{aligned}
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(1)}(\boldsymbol{r}) & =V_{S K}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S} \\
& +V_{S K b}(r)\left[\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda}^{\dagger}\right)\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda^{\prime}}^{j}\right) \cdot \boldsymbol{S}+\left(r^{i} \boldsymbol{K}^{i j} \hat{r}_{\lambda}^{j \dagger}\right) \cdot \boldsymbol{S}\left(\boldsymbol{r} \cdot \hat{\boldsymbol{r}}_{\lambda^{\prime}}\right)\right] \quad S_{12}=12\left(\mathbf{S}_{1} \cdot \hat{\mathbf{r}}\right)\left(\mathbf{S}_{2} \cdot \hat{\mathbf{r}}\right)-4\left(\mathbf{S}_{1} \cdot \mathbf{S}_{2}\right)
\end{aligned}
$$

$1 / \mathrm{m}^{\wedge} 2$

$$
V_{1+-\lambda \lambda^{\prime} \mathrm{SD}}^{(2)}(\boldsymbol{r})=V_{L S a}^{(2)}(r)\left(\hat{r}_{\lambda}^{i \dagger} \boldsymbol{L} \hat{r}_{\lambda^{\prime}}^{i}\right) \cdot \boldsymbol{S}+V_{L S b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger}\left(L^{i} S^{j}+S^{i} L^{j}\right) \hat{r}_{\lambda^{\prime}}^{j}
$$

$$
+V_{S^{2}}^{(2)}(r) \boldsymbol{S}^{2} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} a}^{(2)}(r) S_{12} \delta_{\lambda \lambda^{\prime}}+V_{S_{12} b}^{(2)}(r) \hat{r}_{\lambda}^{i \dagger} \hat{r}_{\lambda^{\prime}}^{j}\left(S_{1}^{i} S_{2}^{j}+S_{2}^{i} S_{1}^{j}\right)
$$

$\left(K^{i j}\right)^{k}=i \epsilon^{i k j}$ is the angular momentum of the spin one gluons $\quad \boldsymbol{L}$ is the orbital angular momentum of the heavy-quark-antiquark pair.
Features:
The nonperturbative part in V_i (r) depend on nonperturbative gluonic correlators non local in time not yet calculated on the lattice: six unknowns, the octet perturbative part can be calculated in perturbation theory

- The only flavor dependence is carried by the perturbative NRQCD matching coefficients

USE LATTICE CALCULATION OF THE CHARMONIUM
 SPIN MULTIPLETS TO EXTRACT the 6 UNKNOWNs and PREDICT THE BOTTOMONIUM SPIN MULTIPLETS, learn also about the DYNAMICS

Charmonium Hybrids Multiplets H_1

lattice data from (violet) from G. K. C. Cheung, C. O'Hars, G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, and D. Tims (Hadron Spectrum), JHEP 12, 089 (2016), arXiv: 1610.01073 (hep-lat]. with a pion of about 240 MeV

Charmonium Hybrids Multiplets H_1

lattice data from (violet) from
G. K. C. Cheung, C. O'Hara, G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, and D. Tims (Hadron Spectrum), JHEP 12, 089 (2016), arXiv:1610.01073 [hep-lat].
with a pion of about 240 MeV
height of the boxes is an estimate of the uncertainty:
estimated by the parametric size of higher order corrections, m alpha_s ${ }^{\wedge} 5$ for the perturbative part, powers of Lambda_qcd/m for the nonperturbative part, plus the statistical error on the fit

Charmonium Hybrids Multiplets H_1

lattice data from (violet) from G. K. C. Cheung, C. O'Hara, G. Moir, M. Peardon, S. M. Ryan, C. E. Thomas, and D. Tims (Hadron Spectrum), JHEP 12, 089 (2016), arXiv: 1610.01073 (hep-lat]. with a pion of about 240 MeV
height of the boxes is an estimate of the uncertainty:
estimated by the parametric size of higher order corrections, m alpha_s ${ }^{\wedge} 5$ for the perturbative part, powers of Lambda_qcd/m for the nonperturbative part, plus the statistical error on the fit
the perturbative part produces a pattern opposite
to the lattice and to ordinary quarkonia \longrightarrow
discrepancy can be reconciled thanks to the nonperturbative parts, especially the one at order $1 /$
m which goes like Lambda^ $2 / \mathrm{m}$ and is
parametrically larger than the perturbative contribution at order $m v^{\wedge} 4$
which is interesting as
some models are taking the spin interaction from perturbation theory with a constituent gluon

Charmonium Hybrids Multiplets H_1 and H_2

H_1 and H_2 corresponds to $\mathrm{l}=1$ and are negative and positive parity resp. The mass splitting between $\mathrm{H}_{-} 1$ and $\mathrm{H} _2$ is a result of lambda-doubling

H_3 and H_4 are also calculated

Bottomonium hybrid spin splittings

thanks to the BOEFT factorizatio we can fix the nonperturbative unknowns from a charmonium hybrid calculationthe nonperturbative low energy unknownsdo not depend on the flavor: we can predict the bottomonium
hybrids splin splittings

and also the other H multiplets

Bottomonium hybrid spin splittings
thanks to the BOEFT factorizatio we can fix the nonperturbative unknowns
Comparison of our prediction to the existing lattice data on H 1
from a charmonium hybrid calculationthe nonperturbative low energy unknownsdo not depend on the flavor: we can predict the bottomonium hybrids splin splittings

and also the other H multiplets

Bottomonium hybrid spin splittings
thanks to the BOEFT factorizatio we can fix the nonperturbative unknowns from a charmonium hybrid calculationthe nonperturbative low energy unknownsdo not depend on the flavor: we can predict the bottomonium hybrids splin splittings

[^0]Comparison of our prediction to the existing lattice data on H 1

Bottomonium H_{1} hybrid spin splittings

blue BOEFT predictions (more precise), violet actual lattice calculation

The $1 / \mathrm{m}$ operator giving origin to the $1 / \mathrm{m}$ spin potential in heavy hybrids
is also responsible for a mixing between spin 0 (1) hybrids and spin 1 (0) quarkonia
in dependence of the strength of the mixing, which is of order $\Lambda_{\mathrm{OCD}}^{2} / m_{h}$ and non-perturbative, why some hybrid candidates appear to decay both into $\pi^{+} \pi^{-} J / \psi$ and $\pi^{+} \pi^{-} h_{c}$.
\longrightarrow spin violating decays
This effect is encoded in a single generalised Wilson loop (one magnetic field inserted in the temporal line, one in the spacial line) to be calculated on the lattice or in effective QCD string model

The $1 / \mathrm{m}$ operator giving origin to the $1 / \mathrm{m}$ spin potential in heavy hybrids
is also responsible for a mixing between spin 0 (1) hybrids and spin 1 (0) quarkonia
in dependence of the strength of the mixing, which is of order $\Lambda_{\mathrm{OCD}}^{2} / m_{h}$ and non-perturbative, why some hybrid candidates appear to decay both into $\pi^{+} \pi^{-} J / \psi$ and $\pi^{+} \pi^{-} h_{c}$.

—> spin violating decays

This effect is encoded in a single generalised Wilson loop (one magnetic field inserted in the temporal line, one in the spacial line) to be calculated on the lattice or in effective QCD string model

Decays to lowest lying quarkonia $->$ get information on the hybrids widths!
BOEFT allows to study hybrids semi inclusive decays to quarkonium $+X$

$$
\Gamma_{H \rightarrow S}=-2\langle H| \operatorname{Im} \Delta V|H\rangle .
$$

we are currently calculating all spin conserving and spin flipping decays for charmonium and bottomonium hybrids
N. B., A. Mohapatra, W.K. Lai, A. Vairo

```
H_3
H_1
```

Decays from hybrids to quarkonium

$n L_{T} \rightarrow n^{\prime} L^{\prime}$	$\Delta E(\mathrm{MeV})$	$\Gamma(\mathrm{MeV})$
$c \bar{c}$ sector		
$1 P_{0} \rightarrow 2 S$	808	$7.5(7.4)$
$2(S)_{1} \rightarrow 1 P$	861	$22(19)$
$4(S / D)_{1} \rightarrow 1 P$	1224	$23(15)$
$b \bar{b}$ sector		
$1 P_{0} \rightarrow 1 S$	1569	$44(23)$
$1 P_{0} \rightarrow 2 S$	1002	$15(9)$
$2 P_{0} \rightarrow 2 S$	1290	$2.9(1.3)$
$2 P_{0} \rightarrow 3 S$	943	$15(12)$
$4 P_{0} \rightarrow 1 S$	2337	$53(25)$
$4 P_{0} \rightarrow 2 S$	1770	$18(7)$
$4 P_{0} \rightarrow 3 S$	1423	$7.4(4.1)$
$2(S / D)_{1} \rightarrow 1 P$	977	$17(8)$
$3(S / D)_{1} \rightarrow 1 P$	1176	$29(14)$
$3(S / D)_{1} \rightarrow 2 P$	818	$5(3)$
$4(S D)_{1} \rightarrow 2 P$	891	$33(25)$
$5(/ D)_{1} \rightarrow 1 P$	1376	$18(7)$
$5(S / D)_{1} \rightarrow 2 P$	1018	$14(8)$

$n L_{T} \rightarrow n^{\prime} L^{\prime}$	$\Delta E(\mathrm{MeV})$	$\Gamma(\mathrm{MeV})$
$c \bar{c}$ sector		
$1 P_{0} \rightarrow 2 S$	808	$7.5(7.4)$
$2(S)_{1} \rightarrow 1 P$	861	$22(19)$
$4(S / D)_{1} \rightarrow 1 P$	1224	$23(15)$
$b \bar{b}$ sector		
$1 P_{0} \rightarrow 1 S$	1569	$44(23)$
$1 P_{0} \rightarrow 2 S$	1002	$15(9)$
$2 P_{0} \rightarrow 2 S$	1290	$2.9(1.3)$
$2 P_{0} \rightarrow 3 S$	943	$15(12)$
$4 P_{0} \rightarrow 1 S$	2337	$53(25)$
$4 P_{0} \rightarrow 2 S$	1770	$18(7)$
$4 P_{0} \rightarrow 3 S$	1423	$7.4(4.1)$
$2(S / D)_{1} \rightarrow 1 P$	977	$17(8)$
$3(S / D)_{1} \rightarrow 1 P$	1176	$29(14)$
$3(S / D)_{1} \rightarrow 2 P$	818	$5(3)$
$4(S D)_{1} \rightarrow 2 P$	891	$33(25)$
$5(/ D)_{1} \rightarrow 1 P$	1376	$18(7)$
$5(S / D)_{1} \rightarrow 2 P$	1018	$14(8)$

$n L_{T} \rightarrow n^{\prime} L^{\prime}$	$\Delta E(\mathrm{MeV})$	$\Gamma(\mathrm{MeV})$
$c \bar{c}$ sector		
$1 P_{0} \rightarrow 2 S$	808	$7.5(7.4)$
$2(S)_{1} \rightarrow 1 P$	861	$22(19)$
$4(S / D)_{1} \rightarrow 1 P$	1224	$23(15)$
$b \bar{b}$ sector		
$1 P_{0} \rightarrow 1 S$	1569	$44(23)$
$1 P_{0} \rightarrow 2 S$	1002	$15(9)$
$2 P_{0} \rightarrow 2 S$	1290	$2.9(1.3)$
$2 P_{0} \rightarrow 3 S$	943	$15(12)$
$4 P_{0} \rightarrow 1 S$	2337	$53(25)$
$4 P_{0} \rightarrow 2 S$	1770	$18(7)$
$4 P_{0} \rightarrow 3 S$	1423	$7.4(4.1)$
$2(S / D)_{1} \rightarrow 1 P$	977	$17(8)$
$3(S / D)_{1} \rightarrow 1 P$	1176	$29(14)$
$3(S / D)_{1} \rightarrow 2 P$	818	$5(3)$
$4(S D)_{1} \rightarrow 2 P$	891	$33(25)$
$5(/ D)_{1} \rightarrow 1 P$	1376	$18(7)$
$5(S / D)_{1} \rightarrow 2 P$	1018	$14(8)$

Tetraquarks and pentaquarks
BOEFT can be used to describe any system made by two heavy quarks bound adiabatically with some light degrees of freedom: glue (hybrids) or light quarks (tetraquarks, pentaquark)
in case of light quarks isospin quantum numbers should be added

Tetraquarks and pentaquarks
BOEFT can be used to describe any system made by two heavy quarks bound adiabatically with some light degrees of freedom: glue (hybrids) or light quarks (tetraquarks, pentaquark)
in case of light quarks isospin quantum numbers should be added steps go as before:

Tetraquarks and pentaquarks

BOEFT can be used to describe any system made by two heavy quarks bound adiabatically with some light degrees of freedom: glue (hybrids) or light quarks (tetraquarks, pentaquark)
in case of light quarks isospin quantum numbers should be added steps go as before:
identify the symmetries, identify the interpolating operators $\mathrm{O} _\mathrm{n}$ and define the static energies
$\mathcal{O}_{n}(t, \boldsymbol{r}, \boldsymbol{R})=\chi(t, \boldsymbol{R}-\boldsymbol{r} / 2) \phi(t, \boldsymbol{R}-\boldsymbol{r} / 2, \boldsymbol{R}) H_{n}(t, \boldsymbol{R}) \phi(t, \boldsymbol{R}, \boldsymbol{R}+\boldsymbol{r} / 2) \psi^{\dagger}(t, \boldsymbol{R}+\boldsymbol{r} / 2)$
$E_{n}^{(0)}(r)=\lim _{T \rightarrow \infty} \frac{i}{T} \log \left\langle\mathcal{O}_{n}(T, \boldsymbol{r}, \boldsymbol{R}) \mid \mathcal{O}_{n}(0, \boldsymbol{r}, \boldsymbol{R})\right\rangle$
. Examples of gluonic operators and light-quark operators for quarkonium hybrids and tetraquarks respectively, $\boldsymbol{q}=(u, d)$ and τ^{a} are isospin Pauli matrices.

Λ_{η}^{σ}	κ	H	$H=H^{a} T^{a}(I=0, I=1)$
Σ_{g}^{+}	0^{++}	$\mathbb{1}$	$\overline{\boldsymbol{q}} T^{a}(\mathbb{1}, \boldsymbol{\tau}) \boldsymbol{q}$
Σ_{u}^{-}	1^{+-}	$\hat{\mathbf{r}} \cdot \mathbf{B}$	$\overline{\boldsymbol{q}}[(\hat{\boldsymbol{r}} \times \boldsymbol{\gamma}) \cdot \boldsymbol{\gamma}] T^{a}(\mathbb{1}, \boldsymbol{\tau}) \boldsymbol{q}$
Π_{u}	1^{+-}	$\hat{\mathbf{r}} \times \mathbf{B}$	$\overline{\boldsymbol{q}}[\hat{\boldsymbol{r}} \cdot \boldsymbol{\gamma}, \boldsymbol{\gamma}] T^{a}(\mathbb{1}, \boldsymbol{\tau}) \boldsymbol{q}$
$\Sigma_{g}^{+\prime}$	1^{--}	$\hat{\mathbf{r}} \cdot \mathbf{E}$	$\overline{\boldsymbol{q}}(\hat{\boldsymbol{r}} \cdot \boldsymbol{\gamma}) T^{a}(\mathbb{1}, \boldsymbol{\tau}) \boldsymbol{q}$
Π_{g}	1^{--}	$\hat{\mathbf{r}} \times \mathbf{E}$	$\overline{\boldsymbol{q}}(\hat{\boldsymbol{r}} \times \boldsymbol{\gamma}) T^{a}(\mathbb{1}, \boldsymbol{\tau}) \boldsymbol{q}$

BOEFT for $I=1$ tetraquarks ${ }^{\circ}$
$\stackrel{\circ}{\circ}$ Tarrus arXiv:1901.09761 $\Gamma_{\mu}=\left(u^{\dagger} \partial_{\mu} u+u \partial_{\mu} u^{\dagger}\right) / 2$ and $u=\exp (i \pi \cdot \boldsymbol{\tau} /(2$

$$
D_{\mu} \boldsymbol{Z}=\partial_{\mu}+\left[\Gamma_{\mu}, \boldsymbol{Z}\right]
$$

$$
\begin{aligned}
\mathcal{L}_{\text {BOEFT for } I=1} & =\int d^{3} r \operatorname{Tr}\left\{Z_{0^{+-}}^{\dagger}\left(i D_{0}-V_{\Sigma_{g}^{+}}^{\text {tetra }}(r)+\frac{\boldsymbol{\nabla}_{r}^{2}}{m_{h}}\right) Z_{0^{+-}}\right\} \\
& +\int d^{3} r \sum_{\lambda \lambda^{\prime}} \operatorname{Tr}\left\{Z_{1+-\lambda}^{\dagger}\left(i D_{0}-V_{1+-\lambda \lambda^{\prime}}^{\text {tetra }}(r)+\hat{r}_{\lambda}^{i \dagger} \frac{\boldsymbol{\nabla}_{r}^{2}}{m_{h}} \hat{r}_{\lambda^{\prime}}^{i}\right) Z_{1^{+--\lambda^{\prime}}}\right\} \\
& +\int d^{3} r \sum_{\lambda \lambda^{\prime}} \operatorname{Tr}\left\{Z_{1--\lambda}^{\dagger}\left(i D_{0}-V_{1--\lambda \lambda^{\prime}}^{\text {tetra }}(r)+\hat{r}_{\lambda}^{i \dagger} \frac{\boldsymbol{\nabla}_{r}^{2}}{m_{h}} \hat{r}_{\lambda^{\prime}}^{i}\right) Z_{1--\lambda^{\prime}}\right\} \\
& + \text { terms with higher orbital momentum and mixing of states }
\end{aligned}
$$

with the isovector field

$$
Z_{\kappa}=Z_{\kappa}^{i} \sigma^{i}=\left(\begin{array}{cc}
Z_{\kappa}^{0} & \sqrt{2} Z_{\kappa}^{+} \\
\sqrt{2} Z_{\kappa}^{-} & -Z_{\kappa}^{0}
\end{array}\right)
$$

needs lattice calculations of tetraquarks static energies

The direct use of the $I=1$ BO effective Lagrangian is limited by the fact that the potentials have not, even in their static limit, been measured on the lattice.
Hence, the situation is different from the hybrid case, where static hybrid energies are known since long time.

I=1S. Prevlosek, H. Bahtiyar, J. Petrovich eprint: 1912.02656
|=0 Bicudo Cichy Peters Wagner PRD 93 (2016) 034501

The BOEFT contains all configurations: what dominates and where depends on the QCD dynamics
Static energies for $I \neq 0$ (schematic):

The static energies are defined in BOEFT that gives the appropriate set of operators to be used
and could describe the short distance limit.
Being nonperturbative objects $E(r)$ should be calculated on the lattice (or in QCD vacuum models)
Figure from J. Tarrus

The BOEFT contains all configurations: what dominates and where depends on the QCD dynamics

Static energies for $I \neq 0$ (schematic):

The static energies are defined in BOEFT that gives the appropriate set of operators to be used and could describe the short distance limit.
Being nonperturbative objects $E(r)$ should be calculated on the lattice (or in QCD vacuum models)
Figure from J. Tarrus

The BOEFT contains all configurations: what dominates and where depends on the QCD dynamics

Binding configuration found on the lattice

S. Prevlosek, H. Bahtiyar, J. Petrovich eprint: 1912.02656

$$
(\bar{b} b \bar{d} u) \quad \mathrm{Z}_{\mathrm{b}} \text { channel } \quad \vec{S}_{h}=\vec{S}_{b}+\vec{S}_{\bar{b}}
$$

Eigen-energies $E_{n}(r)$: channel $S_{n}=1, C P=-1, \varepsilon=-1$

Figure from S. Prevlosek

NREFTs and lattice allows us to describe the physics of quarkonium away from the strong decay
threshold in quantum field theory: higher order perturbative calculation can be performed and quarkonium can be used for precision physics/ factorisation allows to systematically studyconfinement

NREFTs and lattice and open quantum system allows us to describe the nonequilibrium evolution quarkonium in the quark gluon plasma

NREFTs and lattice allows us to describe the physics of quarkonium away from the strong decay
threshold in quantum field theory: higher order perturbative calculation can be performed and quarkonium can be used for precision physics/ factorisation allows to systematically studyconfinement

NREFTs and lattice and open quantum system allows us to describe the nonequilibrium evolution quarkonium in the quark gluon plasma

BOEFT allows to describe hybrids: new unexpected features are found (Lambda doubling, Spin structure) that have important impact on the phenomenology

NREFTs and lattice allows us to describe the physics of quarkonium away from the strong decay
threshold in quantum field theory: higher order perturbative calculation can be performed and quarkonium can be used for precision physics/ factorisation allows to systematically studyconfinement

NREFTs and lattice and open quantum system allows us to describe the nonequilibrium evolution quarkonium in the quark gluon plasma

BOEFT allows to describe hybrids: new unexpected features are found (Lambda doubling, Spin structure) that have important impact on the phenomenology
BOEFT allows to describe hybrids and calculate multiplets, mixing and decays: on going work

NREFTs and lattice allows us to describe the physics of quarkonium away from the strong decay
threshold in quantum field theory: higher order perturbative calculation can be performed and quarkonium can be used for precision physics/ factorisation allows to systematically studyconfinement

NREFTs and lattice and open quantum system allows us to describe the nonequilibrium evolution quarkonium in the quark gluon plasma

BOEFT allows to describe hybrids: new unexpected features are found (Lambda doubling, Spin structure) that have important impact on the phenomenology
BOEFT allows to describe hybrids and calculate multiplets, mixing and decays: on going work
The same picture can be extended to tetraquarks and pentaquarks, once some lattice input on relevant correlators will be available.

NREFTs and lattice allows us to describe the physics of quarkonium away from the strong decay
threshold in quantum field theory: higher order perturbative calculation can be performed and quarkonium can be used for precision physics/ factorisation allows to systematically studyconfinement

NREFTs and lattice and open quantum system allows us to describe the nonequilibrium evolution quarkonium in the quark gluon plasma

BOEFT allows to describe hybrids: new unexpected features are found (Lambda doubling, Spin structure) that have important impact on the phenomenology
BOEFT allows to describe hybrids and calculate multiplets, mixing and decays: on going work
The same picture can be extended to tetraquarks and pentaquarks, once some lattice input on relevant correlators will be available.

NOTICE that the needed lattice calculations are simpler that the direct calculations of the $\mathrm{XY} Z$ properties on the lattice, the knowledge of few correlators together with the BOEFTwill allow to obtain many phenomenological information

NREFTs and lattice allows us to describe the physics of quarkonium away from the strong decay
threshold in quantum field theory: higher order perturbative calculation can be performed and quarkonium can be used for precision physics/ factorisation allows to systematically studyconfinement

NREFTs and lattice and open quantum system allows us to describe the nonequilibrium evolution quarkonium in the quark gluon plasma

BOEFT allows to describe hybrids: new unexpected features are found (Lambda doubling, Spin structure) that have important impact on the phenomenology
BOEFT allows to describe hybrids and calculate multiplets, mixing and decays: on going work
The same picture can be extended to tetraquarks and pentaquarks, once some lattice input on relevant correlators will be available.

NOTICE that the needed lattice calculations are simpler that the direct calculations of the XYZ properties on the lattice, the knowledge of few correlators together with the BOEFTwill allow to obtain many phenomenological information

This picture has the possibility to give a unified description to exotics and to leave the dynamics decide which configuration will dominate in a given range

NREFTs and lattice allows us to describe the physics of quarkonium away from the strong decay
threshold in quantum field theory: higher order perturbative calculation can be performed and quarkonium can be used for precision physics/ factorisation allows to systematically studyconfinement

NREFTs and lattice and open quantum system allows us to describe the nonequilibrium evolution quarkonium in the quark gluon plasma

BOEFT allows to describe hybrids: new unexpected features are found (Lambda doubling, Spin structure) that have important impact on the phenomenology
BOEFT allows to describe hybrids and calculate multiplets, mixing and decays: on going work
The same picture can be extended to tetraquarks and pentaquarks, once some lattice input on relevant correlators will be available.

NOTICE that the needed lattice calculations are simpler that the direct calculations of the X Y Z properties on the lattice, the knowledge of few correlators together with the BOEFTwill allow to obtain many phenomenological information

This picture has the possibility to give a unified description to exotics and to leave the dynamics decide which configuration will dominate in a given range

Combining BOEFT + open quantum systems one can attempt to study the $X Y Z$ in heavy ion collisions
spare slides

Applications of strongly coupled pNRQCD include: Quarkonium Production at LHC

NRQCD factorization formula for quarkonium production

$$
\text { valid for large P_T Bodwin Braaten Lepage } 1995
$$

cross section $\sigma(H)=\sum_{n} F_{n}\langle 0| \mathcal{O}_{n}^{H}|0\rangle$. long distance matrix elements
short distance coefficients partonic hard scattering cross section convoluted with parton distribution
give the probability of a qqbar pair with certain quantum number to evolve into a final quarkonium H
they are vacuum expectation values of four fermion operators with color singlet and color octet contributions and a projection over quarkonium plus X in the middle

Intense work in the theory community, within QCD, NRQCD and SCET,
Qiu, Nayak, Sterman, Butenschon Kniehl, Bodwin, Hee Soh, Chung, J. Lee, Kuang Ta Chao, Y. Q. Ma, Gong Wang, Fleming, Mehen, Yu Jia, Braaten, Lansberg, Leibovich, Rothstein.

NRQCD factorization formula for quarkonium production

$$
\text { valid for large p_T Bodwin Braaten Lepage } 1995
$$

cross section $\sigma(H)=\sum_{n} F_{n}\langle 0| \mathcal{O}_{n}^{H}|0\rangle$. long distance matrix elements
short distance coefficients partonic hard scattering cross section convoluted with parton distribution
give the probability of a qqbar pair with certain quantum number to evolve into a final quarkonium H they are vacuum expectation values of four fermion operators with color singlet and color octet contributions and a projection over quarkonium plus X in the middle
they depend on the considered quarkonium state
Intense work in the theory community, within QCD, NRQCD and SCET,
Qiu, Nayak, Sterman, Butenschon Kniehl, Bodwin, Hee Soh, Chung, J. Lee, Kuang Ta Chao, Y. Q. Ma, Gong Wang, Fleming, Mehen, Yu Jia, Braaten, Lansberg, Leibovich, Rothstein.

Factorization of LDMEs in pNRQCD : the NRQCD LDMEs are factorized in terms of wave

-The number of nonperturbative unknowns is reduced by half
-The nonperturbative unknowns are correlators of gluonic fields that can be calculated on the lattice

Factorization of LDMEs in pNRQCD : the NRQCD LDMEs are factorized in terms of wave smomesmenimenefunctions and universal nonperturbative correlators depending only on the glue
-The number of nonperturbative unknowns is reduced by half
-The nonperturbative unknowns are correlators of gluonic fields that can be calculated on the lattice

Inclusive hadroproduction of p wave quarkonia

$$
\begin{aligned}
\sigma_{\chi Q J}+X & =(2 J+1) \sigma_{Q \bar{Q}\left({ }^{3} P_{J}^{[1]}\right)}\left\langle\mathcal{O}^{\chi}{ }_{Q 0}\left({ }^{3} P_{0}^{[1]}\right)\right\rangle \\
& +(2 J+1) \sigma_{Q \bar{Q}\left({ }^{3} S_{1}^{[8]}\right)}\left\langle\mathcal{O}^{\chi Q 0}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle
\end{aligned}
$$

Factorization of LDMEs in pNRQCD : the NRQCD LDMEs are factorized in terms of wave rsamememinmefunctions and universal nonperturbative correlators depending only on the glue
-The number of nonperturbative unknowns is reduced by half
-The nonperturbative unknowns are correlators of gluonic fields that can be calculated on the lattice

Inclusive hadroproduction of p wave quarkonia

$$
\begin{aligned}
\sigma_{\chi Q J}+X= & (2 J+1) \sigma_{Q \bar{Q}\left({ }^{3} P_{J}^{[1]}\right)^{1}} \\
& +(2 J+1) \sigma_{Q \bar{Q}\left({ }^{3} S_{1}^{[8]}\right)^{1}}
\end{aligned}
$$

could be evaluated on the lattice, similar to TMDs

- The dimensionless correlator \mathcal{E} is defined in terms of chromoelectric fields $g E$ with Wilson lines Φ extending to infinity in the ℓ direction.

> E has a one-loop scale dependence that is consistent with the evolution equation for NRQCD matrix elements

Factorization of LDMEs in pNRQCD : the NRQCD LDMEs are factorized in terms of wave mand universal nonperturbative correlators depending only on the glue

\llcorner

-The number of nonperturbative unknowns is reduced by half
-The nonperturbative unknowns are correlators of gluonic fields that can be calculated on the lattice

Inclusive hadroproduction of p wave quarkonia

$$
\begin{aligned}
\sigma_{\chi Q J}+X= & (2 J+1) \sigma_{Q \bar{Q}\left({ }^{3} P_{J}^{[1]}\right)^{\prime}} \\
& +(2 J+1) \sigma_{Q \bar{Q}\left({ }^{3} S_{1}^{[8]}\right)^{1}}
\end{aligned}
$$

could be evaluated on the lattice, similar to TMDs

- The dimensionless correlator \mathcal{E} is defined in terms of chromoelectric fields $g E$ with Wilson lines Φ extending to infinity in the ℓ direction.
- \mathcal{E} has a one-loop scale dependence that is consistent with the evolution equation for NROCD matrix elements
$\mathcal{E}=\frac{3}{N_{c}} \int_{0}^{\infty} t d t \int_{0}^{\infty} t^{\prime} d t^{\prime}\langle\Omega| \Phi_{\ell}^{\dagger a b} \Phi_{0}^{\dagger d a}(0, t) g E^{d, i}(t) g E^{e, i}\left(t^{\prime}\right) \Phi_{0}^{e c}\left(t^{\prime}, 0\right) \Phi_{\ell}^{b c}|\Omega\rangle$.
\mathcal{E} is a universal quantity that does not depend on quark flavor or radial excitation. Determination of \mathcal{E} directly leads to determination of all $\chi_{c J}$ and $\chi_{b, J}(n P)$ cross sections, as well as h_{c} and h_{b} production rates.
->good description of data at ATLAS and CMS
N.B. Chung Vairo 2007.07613, $\underline{2106.09417}$
nonequilibrium evolution of quarkonium in medium: nuclear modification factor R_AA calculation with no

$$
\begin{aligned}
& \text { We compute the nuclear modification factor } R_{A A}: \\
& \quad R_{A A}(n S)=\frac{\langle n, \mathbf{q}| \rho_{s}\left(t_{F} ; t_{F}\right)|n, \mathbf{q}\rangle}{\langle n, \mathbf{q}| \rho_{s}(0 ; 0)|n, \mathbf{q}\rangle}
\end{aligned}
$$

free parameters, results depends on kappa function
of T (calculated on the lattice) and gamma (extracted from the lattice)

R_AA of singlet Bottomonium in comparison to ALICE, ATLAS and CMS data, left plot bands from variation in kappa, right plot variation in gamma —> we can use R_AA to learn about the QGP!
N.B. Escobedo , Strickland, Vairo, Vander Griend, Weber, 2012.01240

[^0]: and also the other H multiplets

