The BESIII Experiment: Results and Prospects

> Ryan Mitchell
> Indiana University
> Workshop on Double-Charm Tetraquarks
> November 22,2021

> Ryan Mitchell
> Indiana University
> Workshop on Double-Charm Tetraquarks
> November 22,2021

The BESIII Experiment: Results and Procnants

Ryan Mitchell
Indiana University
Workshop on Double-Charm Tetraquarks
November 22, 2021

Physics at BESIII

Charmonium Spectrum

predictions based on PRD 72, 054026 (2005)
measurements from PDG

BESIII Data Sets (primary):

($e^{+} e^{-}$collisions at $E_{C M}$ between 2.0 and 4.95 GeV)
2009: $106 \mathrm{M} \psi(2 S)$
$225 \mathrm{M} \mathrm{J} / \psi$
2010: $975 \mathrm{pb}^{-1}$ at $\psi(3770)$
2011: $2.9 \mathrm{fb}^{-1}$ (total) at $\psi(3770)$ $482 \mathrm{pb}^{-1}$ at 4.01 GeV
2012: 0.45B (total) $\psi(2 S)$
1.3B (total) J/ ψ

2013: $1092 \mathrm{pb}^{-1}$ at 4.23 GeV $826 \mathrm{pb}^{-1}$ at 4.26 GeV

Many topics!

spectroscopy
(light and heavy), flavor physics, new physics, R scans, τ physics, etc.
$540 \mathrm{pb}^{-1}$ at 4.36 GeV

$$
10 \times 50 \mathrm{pb}^{-1} \text { scan } 3.81-4.42 \mathrm{GeV}
$$

2014: $1029 \mathrm{pb}^{-1}$ at 4.42 GeV
$110 \mathrm{pb}^{-1}$ at $4.47 \mathrm{GeV}, 4.53 \mathrm{GeV}$ $567 \mathrm{pb}^{-1}$ at 4.6 GeV
$0.8 \mathrm{fb}^{-1} \mathrm{R}$-scan $3.85-4.59 \mathrm{GeV}$
2015: R-scan $2-3 \mathrm{GeV}+2.175 \mathrm{GeV}$
2016: $\sim 3 \mathrm{fb}^{-1}$ at 4.18 GeV (for D_{s})
2017: $7 \times 500 \mathrm{pb}^{-1}$ scan $4.19-4.27 \mathrm{GeV}$
2018: more J / ψ (and tuning new RF cavity)
2019: 10B (total) J/ ψ
$8 \times 500 \mathrm{pb}^{-1}$ scan $4.13,4.16,4.29-4.44 \mathrm{GeV}$
2020: $3.8 \mathrm{fb}^{-1}$ scan $4.61-4.70 \mathrm{GeV}$
2021: 3B (total) $\psi(2 S)$
$2 \mathrm{fb}^{-1}$ scan $4.74-4.95 \mathrm{GeV}$

Physics at BESIII

Charmonium Spectrum

predictions based on PRD 72, 054026 (2005) measurements from PDG

Primary Data for Spectroscopy:

Light Quark Spectroscopy
10 billion J / ψ
Precision Charmonium Physics
3 billion $\psi(2 S)$
Charmonium (XYZ) Spectroscopy

$$
\begin{aligned}
& \geq 500 \mathrm{pb}^{-1} \text { at } \sim 30 \text { points } \\
& \text { between } 4.0 \text { and } 4.95 \mathrm{GeV}
\end{aligned}
$$

This talk:

(prelim) An example J / ψ decay.
(1) The "Y" states in $e^{+} e^{-} \rightarrow Y$.
(2) The $X(3872)$ in $e^{+} e^{-} \rightarrow \gamma X(3872)$.
(3) The Z_{c} states in $e^{+} e^{-} \rightarrow \pi Z_{c}$.
(4) The $Z_{c s}$ state in $e^{+} e^{-} \rightarrow K Z_{c s}$.
(final) Upgrade of BEPCII to BEPCII-U.

An Example from J / ψ Decays: $J / \psi \rightarrow \gamma\left(\eta^{\prime} \pi^{+} \pi^{-}\right)$

An Example from J / ψ Decays: $J / \psi \rightarrow \gamma\left(\eta^{\prime} \pi^{+} \pi^{-}\right)$

An Example from J / ψ Decays: $J / \psi \rightarrow \gamma\left(\eta^{\prime} \pi^{+} \pi^{-}\right)$

An Example from J / ψ Decays: $J / \psi \rightarrow \gamma\left(\eta^{\prime} \pi^{+} \pi^{-}\right)$

An Example from J / ψ Decays: $J / \psi \rightarrow \gamma\left(\eta^{\prime} \pi^{+} \pi^{-}\right)$

XYZ at BESIIII: (1) Start with $e^{+} e^{-} \rightarrow Y$

(really ψ, since $\left.I^{G} J^{P C}=0^{-} 1^{--}\right)$

XYZ at BESIII: (1) Start with $e^{+} e^{-} \rightarrow Y$

(really ψ, since $\left.I^{G} J^{P C}=0^{-} 1^{--}\right)$

XYZ at BESIII: (1) Start w

XYZ at BESIII: (1) Start w


```
\[
\begin{array}{lllllllll}
0 & & \\
3.8 & 3.9 & 4 & 4.1 & 4.2 & 4.3 & 4.4 & 4.5 & 4.6 \\
& \sqrt{s}(\mathrm{GeV})
\end{array}
\]
```

$=3{ }^{3} \mathrm{~S}_{1}$
$e^{+} e^{-} \rightarrow \pi^{+} D^{0} D^{*-}$
$1000-$ PRL 122, 102002 (2019)
Properties of the Heavy ψ States (PDG 20

There's been great progress in providing new measurements of exclusive $e^{+} e^{-}$cross sections!

More work is required to sort out the experimental properties of the ψ states, including even how many there are.

In the meantime, the region around 4.23 GeV has proven to be a rich source of other new phenomena...

XYZ at BESIIII: (2) Access the X with $e^{+} e^{-} \rightarrow Y \rightarrow \gamma X(3872)$

(really $\chi_{c 1}(3872)$, since $\left.I^{G} J^{P C}=0^{+} 1^{++}\right)$

XYZ at BESIII: (2) Access the X with $e^{+} e^{-} \rightarrow Y \rightarrow \gamma X(3872)$

(really $\chi_{c 1}(3872)$, since $\left.I^{G} J^{P C}=0^{+} 1^{++}\right)$

XYZ at BESIII: (2) Access the X with $e^{+} e^{-} \rightarrow Y \rightarrow \gamma X(3872)$

(really $\chi_{c 1}(3872)$, since $I^{G} J^{P C}=0^{+} 1^{++}$)

XYZ at BESIIII: (2) Access the X with $e^{+} e^{-} \rightarrow Y \rightarrow \gamma X(3872)$

XYZ at BESIII: (2) Access the X with $e^{+} e^{-} \rightarrow Y \rightarrow \gamma X(3872)$

XYZ at BESIII: (2) Access the X with $e^{+} e^{-} \rightarrow Y \rightarrow \gamma X(3872)$

XYZ at BESIII: (3) Access the Z_{c} with $e^{+} e^{-} \rightarrow Y \rightarrow \pi Z_{c}$

$\left(Z_{c}\right.$ means $\left.I^{G} J^{P C}=1^{+} 1^{+-}\right)$

XYZ at BESIII: (3) Access the Z_{c} with $e^{+} e^{-} \rightarrow Y \rightarrow \pi Z_{c}$

$\left(Z_{c}\right.$ means $\left.I^{G} J^{P C}=1^{+} 1^{+-}\right)$

XYZ at BESIII: (3) Access the Z_{c} with $e^{+} e^{-} \rightarrow Y \rightarrow \pi Z_{c}$

$\left(Z_{c}\right.$ means $\left.I^{G} J^{P C}=1^{+} 1^{+-}\right)$

XYZ at BESIII: (3) Access the Z_{c} with $e^{+} e^{-} \rightarrow Y \rightarrow \pi Z_{c}$

$\left(Z_{c}\right.$ means $\left.I^{G} J^{P C}=1^{+} 1^{+-}\right)$

XYZ at BESIII: (4) Access the $Z_{c s}$ with $e^{+} e^{-} \rightarrow K Z_{c s}$

$$
\left(Z_{c s} \text { means } I J^{P}=\frac{1}{2} 1^{+} \text {and } S=1\right)
$$

In 2020 , we shifted our attention to higher energies, scanning the region between 4.6 and 4.7 GeV .

$$
e^{+} e^{-} \rightarrow K^{+}\left(D_{s}^{-} D^{* 0}+D_{s}^{*-} D^{0}\right)
$$

PRL 126, 102001 (2021)

$$
\begin{aligned}
m_{\text {pole }}\left[Z_{c s}(3985)^{-}\right] & =\left(3982.5_{-2.6}^{+1.8} \pm 2.1\right) \mathrm{MeV} / c^{2} \\
\Gamma_{\text {pole }}\left[Z_{c s}(3985)^{-}\right] & =\left(12.8_{-4.4}^{+5.3} \pm 3.0\right) \mathrm{MeV}
\end{aligned}
$$

XYZ at BESIII: (4) Access the $Z_{c s}$ with $e^{+} e^{-} \rightarrow K Z_{c s}$

$\left(Z_{c s}\right.$ means $I J^{P}=\frac{1}{2} 1^{+}$and $\left.S=1\right)$
In 2020 , we shifted our attention to higher energies, scanning the region between 4.6 and 4.7 GeV .

$$
m_{\text {pole }}\left[Z_{c s}(3985)^{-}\right]=\left(3982.5_{-2.6}^{+1.8} \pm 2.1\right) \mathrm{MeV} / c^{2}
$$

$$
\Gamma_{\text {pole }}\left[Z_{c s}(3985)^{-}\right]=\left(12.8_{-4.4}^{+5.3} \pm 3.0\right) \mathrm{MeV}
$$

XYZ at BESIII: (4) Access the $Z_{c s}$ with $e^{+} e^{-} \rightarrow K Z_{c s}$

 $\left(Z_{c s}\right.$ means $I J^{P}=\frac{1}{2} 1^{+}$and $\left.S=1\right)$In 2020, we shifted our attention to higher energies, scanning the region between 4.6 and 4.7 GeV .

PRL 126, 102001 (2021)
PRL 127, 082001 (2021)

$$
\begin{aligned}
& M\left(Z_{c s}(4000)\right)=4003 \pm 6_{-14}^{+4} \mathrm{MeV} / c^{2} \\
& \Gamma\left(Z_{c s}(4000)\right)=131 \pm 15 \pm 26 \mathrm{MeV}
\end{aligned}
$$

$$
m_{\text {pole }}\left[Z_{c s}(3985)^{-}\right]=\left(3982.5_{-2.6}^{+1.8} \pm 2.1\right) \mathrm{MeV} / c^{2}
$$

$$
\Gamma_{\text {pole }}\left[Z_{c s}(3985)^{-}\right]=\left(12.8_{-4.4}^{+5.3} \pm 3.0\right) \mathrm{MeV}
$$

Prospects for BESIII: Upgrade BEPCII to BEPCII-U

Physics Goals:

(1) Explore an unknown energy region.
(2) Access charm baryons at threshold.
$2 \times M\left(\Lambda_{c}^{+}\right)=4572.9 \mathrm{MeV}$
$2 \times M\left(\Sigma_{c}^{++,+, 0}\right)=4905.8-4907.9 \mathrm{MeV}$
$2 \times M\left(\Xi_{c}^{+, 0}\right)=4935.4-4940.9 \mathrm{MeV}$
$2 \times M\left(\Omega_{c}^{0}\right)=5390.4 \mathrm{MeV}$

Summary

BESIII continues to use $e^{+} e^{-}$collisions to explore the τ-charm region in detail.

* 10 billion J / ψ decays allow unprecedented access to light quark hadrons (and increases the urgency for methods to rigorously extract resonance parameters).
* 3 billion $\psi(2 S)$ decays allow new precision studies of charmonium and offer complementary initial states $\left(\eta_{c}(1 S, 2 S), \chi_{c J}(1 P), h_{c}(1 P), \psi(2 S)\right)$ from which to study light quark hadrons.
* XYZ physics remains a key component of the BESIII physics program:
(1) we continue to map out complex structure in exclusive $e^{+} e^{-}$cross sections (" Y " states);
(2) with E_{cm} near 4.23 GeV , we produce the $X(3872)$ through $e^{+} e^{-} \rightarrow \gamma X(3872)$;
(3) also near 4.23 GeV , we see the $Z_{c}(3900)$ and $Z_{c}(4020)$ through $e^{+} e^{-} \rightarrow \pi Z_{c}$; and
(4) at higher E_{cm}, above 4.6 GeV , we see the $Z_{c s}(3985)$ in $e^{+} e^{-} \rightarrow K Z_{c s}$.
* BEPCII will soon be upgraded to BEPCIII-U, opening a path to unexplored territory.

