# The BESIII Experiment: Results and Prospects



Ryan Mitchell Indiana University Workshop on Double-Charm Tetraquarks November 22, 2021



Ryan Mitchell Indiana University Workshop on Double-Charm Tetraquarks November 22, 2021



Ryan Mitchell Indiana University Workshop on Double-Charm Tetraquarks November 22, 2021

### Physics at **BESIII**

#### **Charmonium Spectrum**

predictions based on PRD 72, 054026 (2005) measurements from PDG



### **BESIII Data Sets (primary):**

 $(e^+e^- \text{ collisions at } E_{CM} \text{ between } 2.0 \text{ and } 4.95 \text{ GeV})$ 



### Physics at **BESIII**

#### **Charmonium Spectrum**

predictions based on PRD 72, 054026 (2005) measurements from PDG



**Primary Data for Spectroscopy:** 

**Light Quark Spectroscopy** 

10 billion  $J/\psi$ 

**Precision Charmonium Physics** 

3 billion  $\psi(2S)$ 

**Charmonium (XYZ) Spectroscopy** 

 $\geq$  500 pb<sup>-1</sup> at ~30 points between 4.0 and 4.95 GeV

#### This talk:

(prelim) An example  $J/\psi$  decay. (1) The "Y" states in  $e^+e^- \rightarrow Y$ . (2) The X(3872) in  $e^+e^- \rightarrow \gamma X(3872)$ . (3) The  $Z_c$  states in  $e^+e^- \rightarrow \pi Z_c$ . (4) The  $Z_{cs}$  state in  $e^+e^- \rightarrow KZ_{cs}$ . (final) Upgrade of BEPCII to BEPCII-U.











### **XYZ at BESIII:** (1) Start with $e^+e^- \rightarrow Y$

(really  $\psi$ , since  $I^G J^{PC} = 0^{-1^{--}}$ )



### **XYZ at BESIII:** (1) Start with $e^+e^- \rightarrow Y$

(really  $\psi$ , since  $I^G J^{PC} = 0^{-1^{--}}$ )













**XYZ at BESIII:** (2) Access the X with  $e^+e^- \rightarrow Y \rightarrow \gamma X(3872)$ 

(really  $\chi_{c1}(3872)$ , since  $I^G J^{PC} = 0^{+}1^{++}$ )



**XYZ at BESIII:** (2) Access the X with  $e^+e^- \rightarrow Y \rightarrow \gamma X(3872)$ 

<sup>(</sup>really  $\chi_{c1}(3872)$ , since  $I^G J^{PC} = 0^+ 1^{++}$ )



**XYZ at BESIII:** (2) Access the X with  $e^+e^- \rightarrow Y \rightarrow \gamma X(3872)$ 

















## **XYZ at BESIII:** (4) Access the $Z_{cs}$ with $e^+e^- \rightarrow KZ_{cs}$

$$(Z_{cs} means IJ^{P} = \frac{1}{2}1^{+} and S = 1)$$

In 2020, we shifted our attention to higher energies, scanning the region between 4.6 and 4.7 GeV.



## **XYZ at BESIII:** (4) Access the $Z_{cs}$ with $e^+e^- \rightarrow KZ_{cs}$

 $(Z_{cs} means IJ^P = \frac{1}{2}1^+ and S = 1)$ 





## **XYZ at BESIII:** (4) Access the $Z_{cs}$ with $e^+e^- \rightarrow KZ_{cs}$



In 2020, we shifted our attention to higher energies, scanning the region between 4.6 and 4.7 GeV.



## Prospects for BESIII: Upgrade BEPCII to BEPCII-U

Accelerator upgrade (BEPCII → BEPCII-U):

- \* increase the luminosity by 3× at high energies; and
- \* extend the energy reach  $(E_{\rm cm})$  to 5.6 GeV.

#### **Method:**

- \* add one additional RF cavity per beam; and
- \* optimize optics in the interaction region.

#### **Timeline:**

- \* the project was approved in July 2021;
- \* it requires 2.5 years of construction (with no shutdown);
- \* installation will start in July 2024; and
- \* running begins January 2025.



### **Physics Goals:**

- (1) Explore an unknown energy region.
- (2) Access charm baryons at threshold.

 $2 \times M(\Lambda_c^+) = 4572.9 \text{ MeV}$   $2 \times M(\Sigma_c^{++,+,0}) = 4905.8 - 4907.9 \text{ MeV}$   $2 \times M(\Xi_c^{+,0}) = 4935.4 - 4940.9 \text{ MeV}$  $2 \times M(\Omega_c^0) = 5390.4 \text{ MeV}$ 

### Summary

**BESIII** continues to use  $e^+e^-$  collisions to explore the  $\tau$ -charm region in detail.

\* 10 billion  $J/\psi$  decays allow unprecedented access to light quark hadrons (and increases the urgency for methods to rigorously extract resonance parameters).

\* **3 billion**  $\psi(2S)$  **decays** allow new precision studies of charmonium and offer complementary initial states ( $\eta_c(1S,2S)$ ,  $\chi_{cJ}(1P)$ ,  $h_c(1P)$ ,  $\psi(2S)$ ) from which to study light quark hadrons.

\* **XYZ physics** remains a key component of the BESIII physics program:

(1) we continue to map out complex structure in exclusive  $e^+e^-$  cross sections ("Y" states);

- (2) with  $E_{\rm cm}$  near 4.23 GeV, we produce the X(3872) through  $e^+e^- \rightarrow \gamma X(3872)$ ;
- (3) also near 4.23 GeV, we see the  $Z_c(3900)$  and  $Z_c(4020)$  through  $e^+e^- \rightarrow \pi Z_c$ ; and
- (4) at higher  $E_{\rm cm}$ , above 4.6 GeV, we see the  $Z_{cs}(3985)$  in  $e^+e^- \rightarrow KZ_{cs}$ .

\* BEPCII will soon be upgraded to **BEPCII-U**, opening a path to unexplored territory.