Tetra-quarks, penta-quarks and exotics Old and new views

G.C. Rossia ${ }^{\text {a }}$ \& G. Veneziano ${ }^{\text {b }}$

a) Dipartimento di Fisica - Università di Roma Tor Vergata, Roma - Italia INFN - Sezione di Roma Tor Vergata, Roma - Italia Centro Fermi, Roma - Italia
${ }^{\text {b) }}$ Collège de France, 11 place M. Berthelot, 75231 Paris - France Theory Division, CERN, CH-1211 Geneva 23 - Switzerland

November 22, 2021

Bibliography I

- This talk is based on a few old and more recent papers

Existence of a "family of multi-quark states" conjectured in G. C. Rossi and G. Veneziano Nucl. Phys. B 123 (1977) 507

Ree also the old experimental \& theoretical review paper L. Montanet, G. C. Rossi and G. Veneziano Phys. Rept. 63 (1980) 149.

雷 Baryonium states isospin mixing
G. C. Rossi and G. Veneziano

Phys. Lett. 70B (1977) 255
Phys. Lett. 597B (2004) 338
嗇 Baryonium states emerge in the large 't Hooft coupling limit G. C. Rossi and G. Veneziano JHEP 1606 (2016) 041

Bibliography II

- Since 1977∞-ly many other theoretical papers were published
R. L. Jaffe, Phys. Rev. Lett. 38 (1977), 195 and Phys. Rev. D 15 (1977), 267
R. R. L. Jaffe, Phys. Rev. D 17 (1978), 1444
H. J. Lipkin, Phys. Lett. B 172 (1986), 242-247
H. J. Lipkin, Phys. Lett. B 195 (1987), 484-488
S. Pepin, F. Stancu, M. Genovese, J. M. Richard, Phys. Lett. B 393 (1997), 119

國 S. H. Lee and S. Yasui, Eur. Phys. J. C 64 (2009), 283-295
I J. M. Richard, Few Body Syst. 57 (2016) no.12, 1185-1212
R M. Karliner and J. L. Rosner, Phys. Rev. Lett. 119 (2017) no.20, 202001
FW. Park, S. Noh and S. H. Lee, Nucl. Phys. A 983 (2019), 1-19
L. Maiani, A. D. Polosa and V. Riquer, Phys. Rev. D 100 (2019) no.7, 074002
N. Brambilla et al., Phys. Rept. 873 (2020), 1-154
A. Ali, L. Maiani, A. D. Polosa, "Multiquark Hadrons" doi:10.1017/9781316761465

國 ... plus many more papers that could not fit in this page!

Outline of the talk

- A bit of (pre-)history
- A unified QCD description of color singlet quark states capable of encompassing
- ordinary mesons \& baryons
- multi-quark states \rightarrow "baryonium states" \sim hidden baryon number
- Some phenomenological consideration
- Exotics
- $P_{c} \&$ photoproduction
- A crude mass formula
- Conclusions

A bit of (pre-)history

S(1930) first $\quad(\Gamma \sim 4)$ bump, a 2020 state?

$1974 \rightarrow S(1930) q q \bar{q} \bar{q}$ has today disappeared, but $2020 \rightarrow X(p \bar{p})$ narrow structures just below $p \bar{p}$ thr. newly born $q q \bar{q} \bar{q}$'s (H. Jiang, BES III)?

- V. Chaloupka et al., Phys. Lett. 61B (1976) 487 "Measurement of the total and partial $\bar{p} p$ cross-section between 1901 and $1950 \mathrm{MeV}^{\prime \prime}$ @ CERN

FIG. 5

- W. Bruckner et al., Phys. Lett. 67B (1977) 222 "Observation of a narrow resonance near the $\bar{p} p$ threshold" @ CERN
- S. Sakamoto et al., NP B 158 (1979) 410 "Observation of a narrow resonance with a mass of 1930 MeV in $\bar{p} p$ total cross-section" @ BNL

The roller-coaster of multi-quark states

Rise and fall of narrow multi-quark states

Experimental evidence for the P_{c}

state

R. Aaij et al. [LHCb Collaboration], 2015

]

$$
\begin{array}{lll}
\mathrm{M}\left(\mathrm{P}_{\text {It }}{ }^{+}\right)=4450 & \mathrm{~J}^{\mathrm{P}=5 / 2^{+}} & \Gamma=39 \mathrm{MeV} \\
\mathrm{M}\left(\mathrm{P}_{\| I \mathrm{C}}^{+}\right)=4380 & \mathrm{~J}^{\mathrm{P}}=3 / 2^{-} & \Gamma=205 \mathrm{MeV}
\end{array}
$$

Need for confirmation

- By the same collaboration, PRL 117, 082003 (2016)

> R. Aaij et al. ${ }^{*}$
> (LHCb Collaboration)

- Not seen in photoproduction, 2020 (courtesy of M.R. Shepherd)

A unified picture of hadrons emerges from

QCD color string + "planarity" encompassing

- ordinary mesons \& baryons
- multi-quark states \rightarrow baryonium states

"Topological" expansion of hadronic amplitudes

Multi-quark states emerge in a "topological" expansion at the level of the leading planar and dual amplitudes

- "Planarity" (dominance of "planar" diagrams) \& "planar duality"
- Duality (Rosner, 1968) can be extended to include
- $M M \rightarrow M M, M B \rightarrow M B, B \bar{B} \rightarrow B \bar{B}$ amplitudes
- Duality constraints require introducing notion of junction for B 's
- "Planarity" emerges from theoretical as well as lattice results
- Large N -expansions
- from either large $N_{c} @ \lambda=g^{2} N_{c}$ fix't Hooft 1974 or topological expansion Veneziano 1976
- Adding duality Rossi \& Veneziano 1977, Witten 1979
- one gets \rightarrow Y-shaped baryons \& multi-quark (baryonium) states
- Large $\lambda=g^{2} N_{c}$ expansion Rossi \& Veneziano 2016
- equivalent in QCD lattice regularization to large g^{2} expansion
- \rightarrow minimal "area" diagrams dominate scattering amplitudes
- Lattice data confirm (see movie)
- Y-shaped colour flux tube Bissey et al. 2006
- with junction located at the solution of the Fermat-Torricelli problem, which is the "locus" at minimal distance from $N(=3)$ given points

Unified picture of hadrons \rightarrow CD string + "planarity"

Lowest order building blocks we start with are

Meson $\rightarrow M\left(x_{1}, x_{2}\right)=\frac{1}{\sqrt{3}} \bar{q}_{k}\left(x_{1}\right) C\left(x_{1}, x_{2}\right)_{j}^{k} q^{j}\left(x_{2}\right)$

$$
C\left(x_{1}, x_{2}\right)_{j}^{k}=\left.P \exp \left(i g \int_{x_{1}}^{x_{2}} A_{\mu}(z) d z_{\mu}\right)\right|_{j} ^{k}
$$

$$
\text { Propagator } \rightarrow\left\langle B\left(x_{1}, x_{2}, x_{3}\right) B^{+}\left(y_{1}, y_{2}, y_{3}\right)\right\rangle
$$

Unified picture of hadrons \rightarrow Tiling

- In QCD lattice regularization, at large g^{2}, planarity is leading topology
- amplitudes span surfaces of minimal area
- corrections are $\mathrm{O}\left(\left(g^{2} N_{c}\right)^{-1}, N_{c}^{-1}\right)$

glueball-meson mixing

baryon

Scattering amplitudes

- Gluing \& stretching Meson sheets $\Longrightarrow M M \rightarrow M M$ amplitude

- s-channel mesons dual to t-channel mesons
- leading dynamics proceeds via string breaking \leftrightarrow string fusion

Scattering amplitudes

- Gluing Meson to Baryon sheets $\Longrightarrow M B \rightarrow M B$ amplitude

- s-channel baryons dual to t-channel mesons
- leading dynamics proceeds via string breaking \leftrightarrow string fusion

$B \bar{B} \rightarrow B \bar{B}$ amplitudes

- Gluing together baryon sheets $\Longrightarrow B \bar{B} \rightarrow B \bar{B}$ scattering
- Junction flow \leftrightarrow baryon number flow

- New intermediate s-channel states emerge \rightarrow Baryonium states (states with hidden baryon number) $M_{4}^{J}, M_{2}^{J}, M_{0}^{J}$
- t-channel intermediate states are 1, 2 and $3 q \bar{q}$-jets
- $B \bar{B} \rightarrow B \bar{B}$ annihilation: just turn by 90° the above diagrams
- Junction annihilation \leftrightarrow baryon number annihilation

Leading (planar) $B \bar{B} \rightarrow B \bar{B}$

- s-channel M_{4}^{J} tetra-quark dual to a t-channel $q \bar{q}$ meson
- All sort of exotic s-channel M_{4}^{J} states are predicted Rossi Veneziano, 1977
- By string breaking M_{4}^{J} (baryonium) is coupled to $\bar{B} B$

Leading (planar) $B \bar{B} \rightarrow B \bar{B}$

- Same flavour flow as before

- s-channel $2 q \bar{q}$ jets dual to a t-channel M_{2}^{J} baryonium meson

Loop correction to $B \bar{B} \rightarrow B \bar{B}$

- s-channel $2 q \bar{q}$ jets dual to a t-channel M_{2}^{J} baryonium meson
- insertion of two quark loops allows $M_{2}^{J} \rightarrow B \bar{B}$ decay
(one quark loop \rightarrow mixing between M_{2}^{J} and M_{4}^{J})

Subleading (non-planar) $B \bar{B} \rightarrow M M$

$\mathrm{M}_{4}^{\mathrm{J}}$
tetraquark
MM

- The (dynamically disfavoured?) $M_{4}^{J} \rightarrow M M$ decay
- with junction annihilation and color rearrangement \rightarrow violation of what we may call the J-Zweig rule

Scattering vs. annihilation

Following flavour flow is not enough ...

... need to specify topology, i.e. Junction flow (green sewing lines)

Duality and multi-quark states

Multi-quark states are needed already at lowest order in $M B \rightarrow M B$

A whole family of states is predicted

- Other multi-quark, possibly exotic, states Rossi Veneziano, 1980
- First time penta-quark states are mentioned

pentaquark dibaryon
- Our conjecture
- Fully baryonic decay (via string breaking) is dynamically favoured
- If kinematics forbids it, baryonium states can be unusually narrow
- Many other challenging interpretations are on the market
- Jaffe 1977 - Jaffe \& Wilczek 2003
- Miyazawa, 1979
- Maiani, Piccinini, Polosa \& Riquer 2005
- Matheus, Narison, Nielsen \& Richard 2006
- Karliner \& Lipkin 2008 - Karliner \& Rosner 2015

The interesting limits of CD

- The limits we have good theoretical control of are
- PT, small g^{2} fixed N_{c}
- 't Hooft large- N_{c} limit (fixed N_{f} and fixed $\lambda=g^{2} N_{c}$)
- (lattice) strong coupling limit $g^{2} \rightarrow \infty$, fixed N_{c}
- large λ limit with N_{c} large and g^{2} possibly small (AdS/CFT)
- Question to what extent we can extrapolate
- from large $g^{2} N_{c}$
- strong coupling QCD
- to small $g^{2} \& N_{c}$
- continuum QCD

Some phenomenological considerations

- P_{c} photoproduction in the baryonium picture
- A mass formula for narrow baryonium states

Experimental evidence for the P_{c}

state

R. Aaij et al. [LHCb Collaboration]

Feynman diagrams for (a) $\Lambda_{b}^{0} \rightarrow J / \psi \Lambda^{*}$ and (b) $\Lambda_{b}^{0} \rightarrow P_{c}^{+} K^{-}$decay.

$$
\begin{array}{lll}
\mathrm{M}\left(\mathrm{P}_{\mathrm{cc}}^{+}\right)=4450 & \mathrm{~J}^{\mathrm{P}}=5 / 2^{+} & \Gamma=39 \mathrm{MeV} \\
\mathrm{M}\left(\mathrm{P}_{\mathrm{\| c}}{ }^{+}\right)=4380 & \mathrm{~J}^{\mathrm{P}}=3 / 2^{-} & \Gamma=205 \mathrm{MeV}
\end{array}
$$

$\underset{\alpha}{2}$
]

P_{c} photoproduction \& string breaking decays

- Kinematically forbidden
- $P_{c} \nrightarrow \Lambda_{c}^{+}+\Lambda_{c}^{-}+p$
- $P_{c} \nrightarrow \Sigma_{c}^{++}+\Sigma_{c}^{--}+p$

- dynamically favoured, but kinematically forbidden
- $M_{P_{c}} \sim 4450<2 M_{\Lambda_{c}^{+}}+M_{p} \sim 2 \times 2286+938=5510 \mathrm{MeV}$
- $M_{P_{c}} \sim 4450<2 M_{\Sigma_{c}^{++}}+M_{p} \sim 2 \times 2454+938=5846 \mathrm{MeV}$

P_{c} photoproduction \& Junction annihilation decay - I

- Kinematically allowed
- $P_{c} \rightarrow J / \psi+p$
- closed Junction loop ("bathtub" diagrams)

- $M_{P_{c}} \sim 4450>M_{J / \psi}+M_{p} \sim 3097+938=4035 \mathrm{MeV}$
- This is the decay with the largest available phase-space

P_{c} photoproduction \& Junction annihilation decay - II

- Kinematically allowed
- $P_{c} \rightarrow \Lambda_{c}^{+} / \Sigma_{c}^{+}+\bar{D}_{0}$
- no Junction loops ("snake" diagrams)

- $M_{P_{c}} \sim 4450>M_{\Lambda_{c}^{+}}+M_{\bar{D}_{0}} \sim 2286+1865=4151 \mathrm{MeV}$
- $M_{P_{c}} \sim 4450>M_{\Sigma_{c}^{+}}+M_{\bar{D}_{0}} \sim 2454+1865=4319 \mathrm{MeV}$

P_{c} photoproduction \& Junction annihilation decay - III

- Another kinematically allowed decay
- $P_{c} \rightarrow \Sigma_{c}^{++}+D^{-}$
- no Junction loops ("snake" diagrams)

- $M_{P_{c}} \sim 4450>M_{\Sigma_{c}^{++}}+M_{D^{-}} \sim 2454+1865=4319 \mathrm{MeV}$

The Gluex photoproduction experiment

We can only recall the recent negative result

- $P_{C} \rightarrow J / \psi+p$
- $P_{c} \rightarrow \Lambda_{c}^{+} / \Sigma_{c}^{+}+\bar{D}_{0}$
- $P_{C} \rightarrow \Sigma_{C}^{++}+D^{-}$

A mass formula for narrow baryonium states?

- With an eye to the supposedly dynamically dominant hadronic string breaking (HSB) decay mode of baryonium states, we are led to conjecture the oversimplified mass formulae

$$
\begin{aligned}
& M_{q q \bar{q} \bar{q}}^{J J}+\Delta_{H S B}=M_{B_{1}}+M_{B_{2}} \\
& M_{q q \bar{q} q q}^{J \bar{J}}+2 \Delta_{H S B}=M_{B_{1}}+M_{B_{2}}+M_{B_{3}}
\end{aligned}
$$

for narrow tetra- and penta-quark states with mass below their $B \bar{B}$ or $B \bar{B} B$ threshold

- $\Delta_{H S B}$ is the bit of energy one needs to provide to let the multi-quark state decaying into baryons
- We expect $\Delta_{H S B}$ of the order of some QCD scale and somehow "universal", if the above mass formulae has to be of any use
- Much more refined "mass formulae" have been elaborated by e.g. Karliner \& Rosner - see also references in slide 3

A few applications - Narrow states

- $T_{c c}^{+}(3875)[c c \bar{u} \bar{d}]-\Gamma=0.409 \pm 0.163 \mathrm{MeV}$

$$
\begin{aligned}
& \Delta_{H S B}=\left(M_{\Xi_{c c}[c c u]}+M_{\bar{p}[\bar{u} \bar{u} \bar{d}]}\right)-M_{c c \bar{u} \bar{d}}^{J \bar{J}}= \\
& \quad=(3621+938)-3875=4559-3875=\underline{684 \mathrm{MeV}}
\end{aligned}
$$

- $\chi_{c} \equiv X(3872)[c u \bar{c} \bar{u}]-\Gamma=1.2 \pm 0.2 \mathrm{MeV}$.

$$
\begin{aligned}
& \Delta_{H S B}=\left(M_{\Lambda_{c}^{+}[c u d]}+M_{\Lambda_{\bar{c}}^{-}[\bar{c} \bar{u} \bar{c}]}\right)-M_{c \overline{\bar{c}} \bar{u} \bar{u}}^{J J}= \\
& \quad=(2286+2286)-3872=4572-3872=\underline{700 \mathrm{MeV}}
\end{aligned}
$$

- $Y_{b}(10888)[b q \bar{b} \bar{q}]-\Gamma=50 \pm 10 \mathrm{MeV}$

$$
\begin{aligned}
& \Delta_{H S B}=\left(M_{\Sigma_{b}^{+}[b u u]}+M_{\bar{\Sigma}_{b}^{-}[\bar{b} \bar{u}]}\right)-M_{b u \bar{u} \bar{u}}^{J J}= \\
& \quad=(5810+5810)-10888=11620-10888=\underline{732 \mathrm{MeV}}
\end{aligned}
$$

- $P_{c}^{+}(4450)[u c \bar{c} u d]-\Gamma=6.4 \pm 4 \mathrm{MeV}$

$$
\begin{aligned}
& 2 \Delta_{H S B}=\left(M_{\Sigma_{c}^{+}[c u d]}+M_{\Sigma_{c}^{-}[\bar{c} \bar{u} \bar{d}]}+M_{p[u u d]}\right)-M_{u c \bar{c} u d}^{J J J}= \\
& \quad=(2453+2453+938)-4457=5844-4457=1387 \mathrm{MeV}
\end{aligned}
$$

Note - $\Delta_{\text {HSB }} \sim 700 \mathrm{MeV}$ is what you need to create a $\bar{q} q$ pair and a QCD string bit, something that looks very much like a $\rho\left(m_{\rho} \sim 770 \mathrm{MeV}\right)$!

A few more applications - Not so narrow states

- $Z_{s c}(3982)[c s \bar{c} \bar{u}]-\Gamma \sim 15 \pm 5 \mathrm{MeV}$

$$
\begin{aligned}
& \Delta_{H S B}=\left(M_{\Xi_{c}^{+}[c s u]}+M_{\Sigma_{c}^{--}[\bar{c} \bar{u} \bar{u}]}\right)-M_{[c s \bar{c} \bar{u}]}^{J \bar{J}}= \\
& \quad=(2468+2454)-3982=4922-3982=940 \mathrm{MeV}
\end{aligned}
$$

- $X_{0}(2900)[d u \bar{c} \bar{s}]-\Gamma \sim 57 \pm 12 \mathrm{MeV}$

$$
\begin{aligned}
& \Delta_{H S B}=\left(M_{p[d u u]}+M_{\bar{\Xi}_{c}^{-}[\bar{u} \bar{c} \bar{s}]}\right)-M_{d u \bar{c} \bar{s}}^{J \bar{J}}= \\
& \quad=(938+2468)-2866=3460-2866=594 \mathrm{MeV}
\end{aligned}
$$

- $Z^{-}(4430)[c d \bar{c} \bar{u}]-\Gamma \sim 180 \mathrm{MeV}$

$$
\begin{aligned}
& \Delta_{H S B}=\left(M_{\Sigma_{c}^{0}[c d d]}+M_{\Sigma_{c}^{-}[\bar{d} \bar{c} \bar{u}]}\right)-M_{c d \bar{c} \bar{u}}^{J \bar{J}}= \\
& \quad=(2455+2455)-4430=4910-4430=480 \mathrm{MeV}
\end{aligned}
$$

- $X(6900)[c c \bar{c} \bar{c}]-\Gamma \sim 80 \div 168 \mathrm{MeV}$

$$
\begin{aligned}
& \Delta_{H S B}=\left(M_{\Xi_{c c}^{+}[c c u]}+M_{\overline{\Xi c c}_{--}[\overline{\bar{c} \bar{c}]}]}\right)-M_{c c \bar{c} \bar{c}}^{J \bar{J}}= \\
& \quad=(3621+3621)-6900=7242-6900=342 \mathrm{MeV}
\end{aligned}
$$

Note $-Z_{s c}(3982)[c s \bar{c} \bar{u}]$ is lighter than $Z^{-}(4430)[c d \bar{c} \bar{u}]$ despite $s \leftrightarrow d$

A prediction

- M. Karliner \& J.L. Rosner in PRL 119 (2017) 20, 202001 predict
- $\mathrm{T}[b b \bar{u} \bar{d}], J^{P}=1^{+}, M_{T[b b u \bar{u}]}=10389 \pm 12 \mathrm{MeV}$

baryonic quarks	MeV
$2 m_{b}^{b}$	10087.0
$2 m_{a}^{b}$	726.0
$a_{b b} /\left(m_{b}^{\mathrm{b}}\right)^{2}$	7.8
$-3 a /\left(m_{q}^{\mathrm{b}}\right)^{2}$	-150.0
$b b$ binding	-281.4
Total	10389 ± 12

- \rightarrow stable under strong interactions because
- $M_{T[b b u \bar{d} \overline{]}]}=10389$ lies
- 215 MeV below the $B^{-} \bar{B}^{\star 0}$ threshold $\sim 10604 \mathrm{MeV}$
- 170 MeV below the $B^{-} \bar{B}^{0} \gamma$ threshold $\sim 10559 \mathrm{MeV}$
- We suggest the (weaker) relation between $M_{T[b b u \bar{u}]}$ and $M_{\bar{E}_{b b}^{0}[b b u]}$

$$
M_{T[b b \bar{u} \bar{d}]}=M_{\bar{E}_{b b}^{0}[b b u]}+M_{\bar{p}}-700=M_{\bar{E}_{b b}^{0}[b b u]}+238
$$

Conclusions

- Starting from a planar approximation, a systematic expansion of QCD is constructed, providing a unified picture of hadrons where
- a new family of (possibly exotic) multi-quark hadrons emerges based on the notion of Junction
- tetra-quarks $B=0 \quad J J$
- penta-quarks $B=1 \quad J J J$
- di-baryons $B=2 \quad J J J J$
- ...
- Conjectured dynamically favoured decay is by string breaking (as opposed to J - J annihilation \& colour rearrangement, \downarrow-Zweig)
- if kinematically forbidden, baryonium can be unusually narrow
- opposite to $X(4630)$, it's above $\Lambda_{c}^{+} \Lambda_{c}^{-}$threshold \& large $\Gamma \sim 180 \mathrm{MeV}$
- Photoproduction is a suitable tool to produce penta-quarks
- the paradigmatic case of $P_{c}(4450)$
- A crude mass formula for narrow baryonium states is proposed
- Most probably multi-quark states are a superposition of
- baryonium-like resonances Rossi Veneziano 1977
- diquark-anti-diquark bound states Jaffe 1977, Maiani et al. 2005
- molecular di-meson configurations Karliner Rosner 2005

Thanks for your attention

