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First, let me apologize if I do not quote your favorite paper.



Double heavy tetraquarks and very little, if any, about other exotics

• And second, I will mostly focus this talk on what can we learn from the 
constituent quark model approach in the double heavy four-quark sector.

• Topics I will not cover
– QCD sum rules.
– Lattice QCD.
– Dinamically generated resonances.
– Phenomenological mass-based relations.
– etc…
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1.3 5 0.3c b um GeV m GeV m GeV≈ ≈ ≈

• The constituent quark model have (probably surprisingly) described rather well
mesons and baryons as composite objects made of constituent valence quarks

interacting by means of a potential, normally pairwise, but not always.

• A four-quark state is the simplest object with a non-trivial color structure.
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• The constituent quark model have (probably surprisingly) described rather well
mesons and baryons as composite objects made of constituent valence quarks

interacting by means of a potential, normally pairwise, but not always.
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The authors consider linear+coulomb and power-law potentials and a
variational approach using a harmonic oscillator wave function .

More complex options are included for the all-heavy four-quark states
(chromomagnetic interaction, bag model, negative parity states, etc…)
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Exploring numerical methods

7

The authors search bound states with central forces only, by
comparing three methods: a gaussian parametrization of the
wave-function, the harmonic oscillator expansion and the
hyperspherical expansion. They include spin-spin terms and
virtual meson-meson configurations.
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7

The authors search bound states with central forces only, by
comparing three methods: a gaussian parametrization of the
wave-function, the harmonic oscillator expansion and the
hyperspherical expansion. They include spin-spin terms and
virtual meson-meson configurations.

Using the Bhaduri potential they identified the
S=1 I=0 case as the most promising candidate
for a bound state.



Potentials derived from the MIT Bag model
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The bound-state problem of two- and four-
quarks with coupled channels in color space
is studied, using a potential derived from the
MIT bag model.
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A systematic analysis

9

Using the interquark potential due to Bhaduri et al., the
energies of all L = 0,1,2,3 four-quark states are calculated
for any value of the total S and I and for q = u, d, s, c, b
using a harmonic oscillator basis up to 7/8 quanta. Natural
parity is considered.

This implies 924 combinations.
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Improving the numerical methods
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A different approach based on Gaussian variational wave functions including combinations of three different radial coordinates is considered.
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Exploring constituent quark models
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These systems were studied with a potential model fitted in the
baryon spectrum that includes meson-exchange forces between
quarks and entirely neglects the chromomagnetic interaction.

A detailed formalism is presented to fully account for flavour-
symmetry breaking in the chromomagnetic interaction together with
its application to four-quark systems.
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all non-diagonal terms (relative l ≠ 0)
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Beyond pairwise interactions
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The ground state potential for a system composed of two
quarks and two antiquarks is well fitted by a string flip-
flop potential.
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Compact or meson-meson configuration?
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In this work the meson-meson configuration is solved by means
of the Lippmann-Schwinger equation using the same interaction
as the four-quark problem.

(I) JP = (0) 1+
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Few-body dynamics
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A very delicate interplay between color and spin configurations.

 using the AL1 modelQQqq
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Few-body dynamics
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The treatment of the four-body dynamics for double-charm tetraquarks is
discussed. The variational and Born-Oppenheimer approximations together with
the Hall-Post inequalities give energies very close to the exact ones, while the
diquark approximation might be more problematic.

( )V r r=

VariationalQQqq

( )diquarkQQ qq

Hall PostQQqq −

( )diquarkQQ qq
ExactQQqq

VariationalQQqq

Hall PostQQqq −

1( )V r
r
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Will the relativistic kinematics increase the number of stable multiquarks?
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The authors investigate the mass spectra using the relativized
quark model proposed by Godfrey, Capstick, and Isgur.

The spatial wave function is expanded in terms of a set of
Gaussian basis functions where the Gaussian size parameters
are taken in geometric progressionQQus and QQss



Will the relativistic kinematics increase the number of stable multiquarks?
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In this case the threshold is made of two (qQ) mesons
while in the four-quark state there are (qq), (QQ) and four
(qQ) interactions. Who will benefit more from the
relativistic dynamics?

We consider the AL1 potential properly re-parametrized
in the SR case for keeping the description of the meson
spectra.
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Conclusions

• The constituent quark model predicts a clear bound state, , and another one, ,
just below threshold with (I)JP=(0)1+. Some particular models may point to the existence
of about five more bound states.
– There is not an overwhelming abundance of bound states within the constituent quark model.

• The numerical methods required should be able to handle short- and long-range
correlations, i.e. a meson-meson structures together with a more clusterized behaviour.

• Approximations and simplifications in the colour-spin structure should be done carefully.
– We should double check whether our findings are entirely due to our hypothesis and

aproximations before extracting any general conclusion.
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