2^e partie : Détection des particules

- I. Particules chargées
- II. Photons

- On va utiliser dans ce chapitre les concepts développés dans la première partie
 - La plupart des détecteurs présentés ici ont un point commun : l'énergie déposée est faible par rapport à l'énergie de la particule incidente
- Bref historique :
 - Préhistoire : chambre à brouillard et compteur Geiger
 - Histoire : chambres à bulles et émulsions photographiques
 - Histoire contemporaine :
 - Détecteurs à ionisation
 - Détecteurs à scintillation
 - Détecteurs à semiconducteur

2^e partie : Détection des particules

I. Particules chargées

- 1) Détecteurs à ionisation
- 2) Détecteurs à scintillation
- 3) Détecteurs à semi-conducteurs
- 4) Techniques « exotiques »

II. Photons

- Ils détectent le passage d'une particule chargée en mesurant la charge totale (électrons + ions) produite par l'ionisation du milieu
- Le milieu peut être un gaz, un liquide ou un solide
- Si on ne fait rien, il est très probable que l'électron d'ionisation se recombine avec son ion originel
 - Pour récupérer les électrons avant la recombinaison, il faut appliquer un champ E

 Les particules chargées ionisent le gaz. Chaque électron primaire peu parfois ioniser lui-même d'autres atomes : ⇒ l'ionisation totale est plus grande

Expérimentalement :
$$n_{total} = \frac{\Delta E}{W_i} = \frac{\frac{dE}{dx}\Delta x}{W_i} \approx 3 - 4 n_{primaire}$$

où :

- $\Box \Delta E$: Energie totale déposée par ionisation
- W_i: Energie moyenne nécessaire pour créer une paire électron/ion (typiquement 30 eV pour un gaz)

 Le potentiel d'ionisation I est différent de l'énergie W nécessaire pour créer une paire électron-ion car une partie de l'énergie part en chaleur

	Ionization	Mean energy W per	Energy loss	Nb of electron-	Nb of
	potential I	electron-ion pair	for MIP	ion pairs	electrons
	(eV)	(eV)	$({\rm keV/cm})$	(cm^{-1})	(cm^{-1})
Argon (Ar)	15.7	25.0	2.53	106	25
Xenon (Xe)	12.1	22.0	6.87	312	41
Helium (He)	24.5	41.6	0.35	8.3	5
Hydrogen (H_2)	15.6	36.4	0.32	8.8	5.2
Nitrogen (N_2)	15.5	34.8	1.96	56.3	10
Air		33.8	2.02	59.8	
Oxygen (O_2)	12.5	30.2	2.26	74.8	22
Methane (CH_4)	12.6	30.0	1.61	54	37
Carbon dioxide (CO_2)	13.8	34.0	3.35	100	35

 \approx 10-20 eV \approx 30 eV

Amplification nécessaire car ≈ 100 e-/ion paires/cm est une très faible charge !

Le détecteur gazeux le plus simple : la chambre à ionisation

Une des premières chambres à ionisation :

Chambre à ionisation de Pierre Curie en 1895

Champ électrique vs forme de la chambre

- Trois types de géométries:
 - Plaques parallèles

$$E = \frac{\Phi}{d}$$

• Géométrie cylindrique

$$E(r) = \frac{\Phi}{r \ln(b/a)}$$

• Géométrie sphérique

$$E(r) = \frac{\Phi a b}{r^2 (b-a)}$$

 Pour augmenter le champ, il est nécessaire d'aller vers des géométries cylindriques (la géométrie sphérique est peu pratique)

Le plus simple des compteurs proportionnels : un fil

- Les électrons dérivent vers le fil d'anode. Le champ E est en 1/r. Au delà d'un certain seuil, les électrons ionisent le gaz : création d'une avalanche !
 - Gain typique : $10^4 10^5$
 - L'échelle de temps de l'amplification est de l'ordre de quelques ns
 - Mesure dans une direction uniquement
- Le signal est proportionnel à l'ionisation initiale : on mesure dE/dx

- Dynamique non triviale :
 - a) L'électron unique dérive vers l'anode
 - b) Début de l'avalanche
 - c) Comme les électrons et les ions sont créés au même endroit, l'avalanche s'arrête lorsque le champ E est diminué par le champ des ions
 - d) Le nuage d'électrons dérive rapidement vers l'anode (50 mm/ ms sur 20 mm → max 1-2 ns)
 - e) Le nuage des ions dérive lentement vers la cathode

Choix du gaz

- On choisit généralement des gaz nobles pour lesquels la dissipation d'énergie a lieu principalement par ionisation (pas d'états de vibration ou de rotation)
- La contrepartie à l'utilisation des gaz nobles est qu'un atome excité a une très forte probabilité de se désexciter par émission d'un photon UV (11.6 eV pour Ar)
- Cette valeur est > au seuil d'ionisation pour les métaux (exemple 7.7 eV pour Cu)
 Avalanche permanente par émission d'électrons par les parois !

- Pour résoudre le problème, on introduit dans le gaz noble une petite quantité d'un gaz polyatomique possédant des états de vibration et de rotation
 - Ce quencher va absorber les photons UV avant les parois
 - On utilise souvent du méthane (CH_4) ou de l'isobutane (C_4H_{10})
 - Avec le temps, le quencher (isolant la plupart du temps) se dépose sur le fil et perturbe le fonctionnement du détecteur
- Exemple typique : 70% Ar, 29,6% C_4H_{10} et 0,4% Fréon

Détecteurs à ionisation

Plusieurs problèmes ont été identifiés :

- Défauts dus au vieillissement
- Changement de la résistance à cause du dépôt sur l'anode
- Polymérisation « en chevelure » : claquages du à l'effet de pointe
- Le choix du gaz est une alchimie complexe entre le gain, le vieillissement, le coût, la sécurité, ...

P. Puzo, Fréjus 2021

Les MWPC

PDG

Des MWPC aux chambres à dérive

- La chambre reste inutilisable pendant le temps de dérive des ions !
- Améliorer la collection des charges par addition d'un fil au bon potentiel

Lignes de champ autour des fils d'une MWPC et d'une chambre à dérive

P. Puzo, Fréjus 2021

Chambres à dérive

 Un inconvénient majeur des MWPC est que le volume de détection est faible. On peut au contraire avoir des volumes énormes avec des chambres à dérive

- La mesure du temps permet
 d'accéder à la coordonnée $x: \quad x = \int v_D(t) dt$
- Inconvénients : on doit contrôler la dérive des électrons
 - Processus de diffusion
 - Comment évaluer la vitesse ?
 - Détecteur relativement lent
 - Temps de dérive typiques : 5 cm/ μ s (e⁻), 500 μ m/ μ s (ions)

Mobilité

• La vitesse des ions est proportionnelle au champ $E(\lambda \text{ libre parcours moyen et } M \text{ masse des ions}):$

$$v_d(E) = \mu E$$
 avec $\mu = \frac{e \lambda}{\sqrt{12 \, k_B T M}}$

- Le coefficient µ est la mobilité des ions (en cm²V⁻¹s⁻¹)
- Valeurs typiques : quelques cm/ms pour E = 1 kV/cm
- La vitesse des e- n'est pas proportionnelle à E
 - Valeurs typiques : quelques cm/µs pour
 - \Box E = 1 kV/cm (10⁴ plus rapide que les ions)

Gas	Ion	Mobility
		$(cm^2V^{-1}s^{-1})$
Ar	Ar^+	1.54
\mathbf{Ar}	${\rm CH_4}^+$	1.87
\mathbf{Ar}	$C_2H_6^+$	2.06
\mathbf{Ar}	CO_2^+	1.72
He	$\mathrm{He^{+}}$	10.4
$\rm CO_2$	CO_2^+	1.09

Quelques mobilités d'ions

Vitesse des e-versus E pour quelques gaz

Diffusion et dérive

 En l'absence de champ, les électrons et les ions vont diffuser par collision sur les atomes du gaz
 dN/dx

$$\begin{cases} \frac{dN}{dx} = \frac{N}{\sqrt{4 \pi D t}} \exp\left(-\frac{x^2}{4 D t}\right) & \sigma(t) \\ \sigma(t) = \sqrt{2 D t} & \int \\ \end{array}$$

- Plus la chambre sera grande, plus la diffusion va étaler la trace
- En présence d'un champ *E*, les électrons vont se déplacer avec une vitesse moyenne constante $\vec{F_v} = -\frac{m}{\tau}\vec{v} \implies \vec{v_D} = \frac{e\tau}{m_e}\vec{E}$ $\vec{F_v}: \text{ force de frottement visqueux}$

X

• En présence de champs *E* et *B*, la vitesse de dérive s'écrit :

$$\boldsymbol{v} = \frac{e}{m_e} \frac{\tau}{1 + \omega^2 \tau^2} \left(\boldsymbol{E} + \frac{\omega \tau}{B} (\boldsymbol{E} \times \boldsymbol{B}) + \frac{\omega^2 \tau^2}{B^2} (\boldsymbol{E} \cdot \boldsymbol{B}) \boldsymbol{B} \right)$$

- Cas particulier : E et B parallèles
 - □ La diffusion longitudinale est inchangée, mais dans la direction transverse, les e⁻ spiralent sur un cercle de rayon v_T/ω
 - □ Le coefficient de diffusion transverse devient :

$$D_T(B) = \frac{D_T(0)}{1 + \omega^2 \tau^2} \qquad \text{Inférieur à } \mathcal{D}_T(0) \parallel$$

- La mesure de la 2^e coordonnée transverse est facile à obtenir :
 - en croisant des MWPC
 - en prenant deux orientations de fils différentes dans une chambre à dérive

La présence du champ *B* modifie la dérive des e

P. Puzo, Fréjus 2021

Une extension des chambres à dérives : les TPC

- TPC = Time Projection Chamber
- E//B (solénoïde). Le coefficient de diffusion transverse est réduit car typiquement $\omega \tau \approx 10$!
- La base des détecteurs de traces sur collisionneurs e⁺e⁻
- Permet une reconstitution des traces en 3D
 - x et y viennent du fil et du segment touchés
 - □ *z* provient du temps de dérive
- Permet également une mesure de dE/dx
- Calibration pour la connaissance précise de E dans tout le volume

TPC typique

Les TPC d'ALEPH et STAR

ALEPH : e⁺e⁻ (200 GeV)

STAR : Au+Au (130 GeV/nucléon) avec 2000 traces

P. Puzo, Fréjus 2021

La TPC d'ALICE

M. Lopez-Noriega

18

16

14

12

10

row

98

Main tracking detector for charged particles of the ALICE Central Barrel

Résumé sur les détecteurs à ionisation

- Il existe plusieurs types de détecteurs liés à divers modes de fonctionnement :
 - Recombinaison (inutile)
 - Chambres à ionisation :
 - Toute la charge initiale est recueillie sans amplification
 - Gain≈1
 - Compteurs proportionnels
 - Le champ E est suffisamment fort pour induire des avalanches secondaires
 - Gain ≈ 10⁴-10⁵

P. Puzo, Fréjus 2021

Nombre d'ions collectés pour des α et des électrons

- Compteurs proportionnels saturés
 - Champ E encore plus élevé
 - HT pulsée
 - Gain ≈ 10⁸-10⁹
- Compteurs Geiger Muller
 - Tout le fil d'anode est affecté
 - Coupure de la HT pour arrêter le processus

Nombre d'ions collectés pour des α et des électrons

Un exemple en mode saturé : les TGC

- TGC = Thin Gap Chamber
- Opération en mode saturé (entre les régimes proportionnel et Geiger)
- Temps de montée très bref (2 ns)
 - Utile pour faire un trigger !
- Accepte des taux de comptage élevés (jusqu'à 10⁶ Hz)

Cas d'une géométrie sphérique : SEDINE

- SPC = Spherical Proportional Counter
- Large volume de dérive une seule voie de lecture
- Seuil en énergie très bas (indépendant du volume) à cause d'une très basse capacité
- Optimisé pour la recherche d'événements
- rares à bas seuil (recherche de WIMPS)
- Technique utilisée également par l'expérience R2D2

Situation idéale

Avec disque correcteur

Principe de SEDINE, au LSM

Les évolutions

- Les détecteurs basés sur des structures à fils sont limités par des processus de diffusion et des effets de charge d'espace à des résolutions de 50 à 100 µm
- Les techniques modernes de microélectronique ont permis de franchir un cap en diminuant considérablement la taille des cellules
- En utilisant des granularités de l'ordre de la centaine de μm (un ordre de grandeur plus petit qu'une distance typique entre fils), ces détecteurs offrent a priori des capacités de flux très élevées (> 10⁶ Hz/mm²) et une excellente résolution spatiale (≈ 30 μm)

Détecteurs à ionisation

C. Niebuhr

Extension récente : MSGC

- MSGC = Micro Strip
 Gas Chamber
- Segmentation fine (≈ 3-5 mm)
 - Pas de fils fragiles !
 - Substrat en verre (pas de silicium) : insensible aux radiations et forte rigidité mécanique
 - Basé sur les technologies de la microélectronique : bonne résolution spatiale
 - Faible distance de dérive des ions : fort taux de comptage possible

MSGC typique

Taux de comptage pour des MWPC et des MSGC

Détecteurs à ionisation

Extension récente : Micromegas

- Micromegas = MICRO MEsh
 GASeous Detector
- Principe :
 - Une grille pour découpler la région de dérive des e- de la zone d'amplification et pour récupérer les ions
 - Faible zone pour l'amplification : pas de pads pour récupérer les ions pouvant provoquer des décharges vers les anodes

Extension récente : GEM

GEM = Gas Electron Multiplier (1988)

- Feuille Cu-Kapton-Cu percée regulièrement de trous de 30-50 μm
- 200 à 400 V entre les 2 faces
- 100 à 1000 e⁻ produits par un e⁻ unique à l'entrée d'un trou
- Grandes surfaces possibles
- Possibilité d'un système en « mille-feuille »

P. Puzo, Fréjus 2021

2e partie : Détection des particules

PDG

2^e partie : Détection des particules

I. Particules chargées

- 1) Détecteurs à ionisation
- 2) Détecteurs à scintillation
- 3) Détecteurs à semi-conducteurs
- 4) Techniques « exotiques »

II. Photons

Détecteurs à scintillation

 Certains milieux transparents émettent un peu de lumière après excitation par une particule chargée (fluorescence ou phosphorescence)

Rappels :

- L'émission d'un photon par un atome est due à un retour vers un état plus fondamental d'un électron sur un état excité de l'atome
- On parle d'incandescence quand le mode d'excitation du noyau est le chauffage, et de luminescence dans les autres cas
- Quand l'émission du γ suit immédiatement l'excitation, on parle de fluorescence et de phosphorescence quand il y a un délai

- Ces photons peuvent être détectés par un milieu photosensible qui doit être transparent à la longueur d'onde du rayonnement
- On considèrera deux types de matériaux :
 - Les scintillateurs inorganiques
 - Milieux denses, bon rendement, relativement lents
 - Idéal pour la détection de particules chargées et de γ
 - Chers!
 - Les scintillateurs organiques
 - Milieux légers, faible rendement, relativement rapides
 - Faible efficacité de détection des γ
 - Très bon marché!

- Le temps de montée du signal est très rapide (1-2 ns) et surtout plus rapide que les détecteurs d'ionisation
 - Systèmes de déclenchement et mesures de temps de vol
- La décroissance est au contraire très lente (constante de temps ≈ 100-200 ns)

- Réponse linéaire sauf à très basse énergie : calorimétrie ! Temps
- Les photons doivent traverser le milieu pour atteindre la zone photosensible. Le nombre de photons transmis est :

$$N(x) = N_0 \exp\left(-\frac{x}{\lambda}\right)$$
 $\lambda : \text{longueur d'atténuation}$

Pour des détecteurs de grande dimension, il faut $\lambda \approx 1$ m ou plus

Scintillateurs inorganiques

- Le mécanisme de la fluorescence est dû aux états intermédiaires des impuretés du milieu
- Principalement des cristaux : (NaI, BaF₂, BGO, PbWO₄, ..)
 - Très forte dépendance avec la température
 - 10³-10⁴ photons/MeV, sauf pour
 PbWO₄ (≈ 100)
 - Souvent plusieurs constantes de temps (de 1-2 ns à 100 ms) et plusieurs longueurs d'onde (typiquement 200-500 nm)

Intensité de scintillation pour des γ dans un cristal Csi:Tl

Détecteurs à scintillation

			١	~	Light yield	
	$ ho g/cm^3$	$^{7}decay$ ns	nm	π	Photons/MeV	-
NaI(Tl)	3.67	245	410	1.85	40000	
CsI(Tl)	4.51	1220	550	1.79	65000	
CsI(Na)	4.51	690	420	1.84	35000	
$\operatorname{CsI}(\operatorname{pure})$	4.51	30	310	1.95	1400	Princ
BaF_2	4.89	650	300	1.50	1500	des cr
BaF_2	4.89	0.9	220	1.50	10000	les
BGO	7.13	300	480	2.15	4000	util
$PbWO_4$	8.30	30	425	2.20	780	
PbWO ₄	8.30	10	420	2.20	200	

BaBar: CsI(TI) : 16 X_0 L3: BGO : 22 X₀ CMS: PbWO(Y) : 25 X₀

oales étés staux olus sés

P. Puzo, Fréjus 2021

Scintillateurs organiques

- Principalement plastique
 - La base, (par exemple styrène ou vinyltoluène), scintille dans l'UV. Typiquement, 1 photon est émis pour 100 eV déposés
 - □ Un MIP crée \approx 2 10⁴ photons dans 1 cm de scintillateur
- Le libre parcours moyen de ces photons est de quelques mm
 Impossible d'atteindre le détecteur de photons
- Un dopant (appelé wavelength shifter (WLS), ou fluor) est ajouté (typiquement 1% de concentration)
 - Il absorbe les photons de scintillation et les re-émet rapidement (≈ 1 ns) dans une longueur d'onde plus grande, donc plus propice à la détection (de 300 à 500 nm)

- Ce photon a un bien plus grand libre parcours moyen
- Parfois, un 2^e fluor (≈ 0.05% de concentration), est ajouté pour décaler encore plus la longueur d'onde

Schéma typique d'un WLS pour un scintillateur organique

P. Puzo, Fréjus 2021

 Un scintillateur est un mélange complexe de divers éléments

> Quelques composés principaux et leurs dopants

ſ		solvent	secondary	tertiary
			fluor	fluor
	Liquid	Benzene	p-terphenyl	POPOP
	scintillators	Toluene	DPO	BBO
		Xylene	PBD	BPO
1	Plastic	Polyvinylbenzene	p-terphenyl	POPOP
	scintillators	Polyvinyltoluene	DPO	TBP
		Polystyrene	PBD	BBO
				DPS

 Il faut ensuite amener les photons vers le photodétecteur à l'aide d'un guide de lumière (efficacité typique ≈ 20-30%)

P. Puzo, Fréjus 2021

Détecteurs à scintillation

- Tracking :
 - □ Fibres hexagonales, carrées, ...
 - On peut éviter tout crosstalk entre voies (métallisation des surfaces)

IPAG (Grenoble)

- La scintillation se produit également dans les gaz
- Dans la haute atmosphère, N₂ émet du vert par interaction avec les particules chargées capturées par le champ magnétique terrestre
 Aurores boréales
- Un autre exemple est La ronde des Electrons (Science-ACO) à Orsay

L'accélérateur sur table de Sciences ACO

Aurore boréale

Sciences ACO (Orsay)

2^e partie : Détection des particules

I. Particules chargées

- 1) Détecteurs à ionisation
- 2) Détecteurs à scintillation
- 3) Détecteurs à semi-conducteurs
- 4) Techniques « exotiques »

II. Photons

- Les détecteurs à semi-conducteurs forment un type particulier de détecteur à ionisation : au lieu d'exciter (ou d'ioniser) le milieu, une particule chargée qui traverse un semi-conducteur crée des paires e-/trous quasi libres
 - \Box On applique un champ *E* pour collecter les charges
- Isolants qui peuvent transporter du courant
 - Intermédiaire entre isolant et conducteur

- On considèrera :
 - Le silicium : particules chargées et photons
 - Le germanium : photons
- Il faut ≈ 3 eV pour créer une paire e-/trou (pour Si et Ge), contre ≈ 30 eV pour un détecteur à ionisation et ≈ 300 eV pour un scintillateur !!

Avantages :

- Très bonne résolution en énergie (sans égale à basse énergie)
- Détecteur compact (puisque solide)
 - Bon candidat pour un détecteur de trace
- Très bonne linéarité en énergie
 - Sauf pour les particules très ionisantes (ions lourds) pour lesquelles des effets de charge d'espace limitent la résolution
- □ Temps de montée \approx quelques ns
- Inconvénients :
 - Coût, fragilité, sensibilité aux radiations

Détecteurs Silicium

- Avantage : le Si est très abondant sur Terre
- Peut être manipulé par les techniques de la microélectronique
- Très haute densité (2,33 g/cm³) : un MIP va créer \approx 100 paires e-/trou par μ m
 - Épaisseur typique 300 μ m \Rightarrow 3 10⁴ paires e-/trou en moyenne
- Inconvénients :
 - Pas de mécanisme de multiplication de la charge
 - Coût, sensibilité aux radiations

Détecteurs à semi-conducteurs

-HV.

readout strips

C. Joram

preamplifier

 Les électrons dérivent d'un côté, et les trous de l'autre

Schéma de principe d'un détecteur microstrip à double face

0/0/0/0/0/0

detector

bump bonds

ATLAS Prel

Détecteur pixel

- On segmente le Si en une matrice. L'électronique de lecture devra être segmentée de la même manière
- Utilisé de manière intensive pour les détecteurs de traces d'ATLAS, ALICE et CMS ; assembled in

2 2.5 p (GeV)

electronics

 10^{5}

 10^{4}

 10^{3}

 10^{2}

10

Capteurs CCD

- CCD = Charge Couple Device : photodétecteur à transfert de charges
 - Détection des photons (paires e⁻-trou)
 - Accumulation des charges dans des capacités MOS (Metal Oxyde Semiconductor)

Cellule individuelle CCD

- On transfère ensuite les charges accumulées dans une cellule vers sa voisine
- Lecture des canaux en série
 - 2000 e⁻ uniquement, mais temps de lecture élevé

Bon marché car commercial (et linéaire !)

Détecteur au germanium

- Photons uniquement
- Excellente résolution
- Peut être très compact

Energie des photons

2^e partie : Détection des particules

I. Particules chargées

- 1) Détecteurs à ionisation
- 2) Détecteurs à scintillation
- 3) Détecteurs à semi-conducteurs
- 4) Techniques « exotiques »
- II. Photons

- D'autres méthodes, principalement basées sur la photographie, ont été utilisées auparavant :
 - Chambres à brouillard
 - Chambres à bulles
 - Emulsions
- La plupart d'entre elles ne sont plus utilisées de nos jours

Visualisation de traces dans une chambre à brouillard

- Rappels de thermodynamique des états métastable :
 - AB et GF sont sur des états stables. Les transitions BC et FE sont des retards aux transitions de phase (états métastables)
 - BC correspond à de la vapeur sursaturée : la vapeur existe seule à une pression > à la pression d'équilibre liquide-vapeur.

Construction de Maxwell du diagramme p=f(V) d'un fluide

- Cette vapeur est instable et une très faible perturbation fait apparaître des gouttes de liquide dans le gaz
- C'est le principe des chambres à brouillard où des particules chargées provoquent la formation de gouttelettes de liquide le long de leurs traces. Il n'y a plus qu'à prendre ensuite une photo !

Visualisation de traces dans une chambre à bulles

- Rappels de thermodynamique des états métastable :
 - FE correspond à du liquide surchauffé : le liquide existe seul à une pression inférieure à la pression d'équilibre liquidevapeur
 - Ce liquide est instable et une très faible perturbation fait apparaître des bulles de vapeur dans le liquide

Construction de Maxwell du diagramme p=f(V) d'un fluide

 C'est le principe des chambres à bulles où des particules chargées provoquent la formation de bulles le long de leurs traces. Il n'y a plus qu'à prendre ensuite une photo !

La chambre de 15' de Fermilab

Fréquence de quelques dizaines de Hertz

Un exemple pédagogique ...

 Traces observées jusqu'au seuil de détection (mesurable) : le rayon de courbure des traces diminue

La réalité : la chambre de 15' de Fermilab

Pas forcément simple à interpréter

Un exemple de Fermilab

821

Emulsions

 Les émulsions nucléaires sont faites d'une petite couche d'halogénure (AgBr ou AgCl) déposée sur un substrat en gélatine

- Principe:
 - Une particule chargée crée de l'ionisation
 - Certaines molécules interagissent. Production d'argent métallique
 - Une émulsion peut être exposée au faisceau pendant très longtemps. Puis tout est démonté et l'analyse peut commencer
 - Les traces en argent sont attaquées chimiquement et révélées par un processus semblable au développement d'une photographie

CHORUS (1/2)

- CHORUS = CERN Hybrid Oscillation Research apparatUS (1994 1997) : recherche des oscillations $v_{\mu} \rightarrow v_{\tau}$
- Utilise des émulsions très particulières (gélatine + AgBr + I + ...) qui sont exposées pendant environ un an au faisceau de neutrinos. Les émulsions sont sensibles :
 - Au faisceau de neutrinos et aux particules chargées générées par l'interaction des neutrinos
 - Au faisceau de π utilisé pour la calibration
 - Aux muons cosmiques (impossible à supprimer par le trigger)
 - A la radioactivité ambiante (idem)
- L'ensemble est ensuite développé

CHORUS (2/2)

- Chaque image (il y en a 10¹³ !) est étudiée au microscope (x 50)
- Les différences de brillance sont liées à la focalisation du microscope qui n'est que de quelques microns. On peut ainsi déterminer la profondeur à laquelle à eu lieu l'interaction
- Toutes les traces sont ensuite assemblées pour reconstituer les événements globaux

Une image de CHORUS

Un événement

 De nos jours, les émulsions sont toujours utilisées à cause de leur résolution inégalée

Particules α issues d'un sel d'uranium déposé à la surface d'une émulsion. La surface est \approx 0.2 x 0.3 mm²

