

Voyager

- 1. ~100x increase in rates
- Intermediate step on the way to Einstein's Explorer network
- 3. Less cost than Adv LIGO
- 4. Re-use most of LIGO parts
- 5. Don't be afraid of cryogenics before you try it.

Science Metrics Paper: Instrument Paper: https://doi.org/10.1088/1361-6382/ab3cff

https://doi.org/10.1088/1361-6382/ab9143

'Living' whitepaper: https://docs.ligo.org/voyager/voyagerwhitepaper/main.pdf

CORE IDEAS

- 1 Amorphous silicon coating
 - Reduces thermal noise.
 Prospect of a 4-7x reduction from aLIGO level
 - Favors **2 μm** wavelength

- 2 Crystalline silicon substrate
 - Improves quantum noise.
 200 kg mass, 3 MW power
 - High thermal conductivity, ultra-low expansion at 123 K

- 3 Radiative cooling
 - Still efficient at 123 K
 - Suspension design not constrained by cryogenics

-Wavelength choice

 $Choice\ of\ Laser\ Wavelength$

28

Consideration	Wavelength			
	$1550\mathrm{nm}$	$1900\mathrm{nm}$	$2000\mathrm{nm}$	$2128\mathrm{nm}$
Photodiode Q.E.	> 99%	$\approx 87\%$. Promising trajectory (Section 5.4).		
Coating thermal noise	Low	≈14% larger		
Optical scatter loss	66% larger	Low		
Residual gas noise	${ m low}~{ m H_2O}$	some H_2O low H_2O		
Coating absorption	High	Medium		
Si substrate absorption	Increases as λ^2 but not dominant effect			
SiO_2 substrate absorption	< 1 ppm/cm	20 ppm/cm	40 ppm/cm	120 ppm/cm
Angular instability	Less stable	More stable arm cavity		
Parametric instability	Very little change with wavelength			

TABLE 3: Summary of wavelength considerations

Coating absorption favors longer wavelength

- Requirement for absorption
- Set by heat budget
- Can extract about 10W via radiative cooling
- Too much absorption limits stored power OR raises temperature

Absorption in fused silica favors shorter wavelength

- Multi-phonon absorption
 - Fundamental process in fused silica
 - Rises steeply above 2um

Image credit: RP Photonics Encyclopedia

Mariner-40m: Voyager prototype

HAVE

- A Voyager prototype in the CIT-40m lab
- 2-phase approach:
 - Phase I: cryo FPMI
 - Phase II: ~Voyager
- Silicon optics
- 123 K operation
- 2128nm PSL
- DRFPMI + ALS + BHD
- Single double stage suspensions
- 1.4 micron ALS

HAVE-NOT

- No Quad Suspensions
- Passive stack: no ISI
- ~100x lower power
- Smaller beams
- No TCS
- No filter cavities
- Maybe some squeezing?

Two micron lasers - options

2128nm DM LASER

EP2128-DM-B - Preliminary

- Parametric down-conversion to 2128nm
- ECDL is an option (<u>2um article</u>)
- Laser diodes (around 2000nm)

Eblana Photonic tive, highly cohe discrete-mode linewidth perforr applications.

2128 nm DOPO

Image from arXiv:2008.07193

Voyager Research Opportunities

- 1. 35 W laser amplifier for 2 microns
- EOM for 2 microns with resonant modulation capability and a 35 W power handling capacity
- Iow absorption glass to meet the BS requirements
- 4. process to anneal large pieces of silicon to trap the Oxygen and lower the 2 micron absorption coefficient to 5 ppm/cm.
- low noise, low absorption HR mirror coating for 2 microns
- 6. ALS (1.4-3 microns, phase locked with carrier)
- 7. High QE Photodiode for 2 microns

- 8. How to handle the ice formation on the HR surfaces of the mirrors?
- Damping of Parametric Instabilities: beyond the "Mushrooms" approach
- 2-micron squeezer (10 dB measured in a homodyne detector)
- 11. Quadruple Suspension
- 12. Seismic Isolation Platform
- Optical Rigid Body: lock all platforms with lasers
- 14. Dynamic RoC actuator for test masses
- 15. UHV compatible 2um Faraday isolator

