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Monte Carlo simulations

* Born during WW2

e Stanislaw Ulam, John von Neumann ... (Manhattan Project)
» Simulate radiation/particles transport

* MC in HEP and medical physics
* Heavily used in High Energy Physics (CERN)
 MedPhys: roots in the 70, imaging systems (SPECT, PET) and Radiation Therapy

* Nowadays in medical physics

* All TPS (Treatment Planning System) o
e All PET, SPECT ; Total-Body PET projects (Explorer, etc) (L



Monte Carlo simulations evolution

* More than 60 years of evolution
* More accurate physical databases

* More generic codes
(MCNPX, EGSNRC, Penelope, Geant4, Gate)

Faster algorithms

Use of powerful computing infrastructures
(cluster, GPU)

* However

* Increasing need for detailed and accurate physical
processing (TOF, SiPM, CZT, etc)

* Still long simulations times (need VRT)
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Abstract

Monte Carlo techniques have become ubiquitous in medical physics over the
last 50 years with a doubling of papers on the subject every 5 years between
the first PMB paper in 1967 and 2000 when the numbers levelled off. While
recognizing the many other roles that Monte Carlo techniques have played
in medical physics, this review emphasizes techniques for electron—photon

trancnort cimulatione  The broad range of codec available ic mentioned hut




Artificial Intelligence (A.l)

* A.l. methods, image processing (photos, video)
* Deep Learning, neural network

* Medical physics:
* Detection
* Auto segmentation
* Image generation (CT from MRI, CT from CBCT etc)
* Image enhancement (remove artefacts)
* Radiomics
e etc ...




Deep learning principle

e Stepl: learn a model S \
ini SN
* Input training database (large), composed of >“3ff“$ R o N\
numerous independent samples @M@

* Neural network architecture and learning methods
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e Step2: use the model
* Get input data, apply the NN

Could it be useful for MC ?



(Very short) literature review

DL and dose estimat a frontiers

DL for dose computz

[Lee2019, G6tz20

U-Net architectur
Large dataset vari

Artificial Intelligence for Monte Carlo
simulation in medical physics

with Monte Carlo simulation

[Peng2019, Forna David Sarrut '*, Ane Etxebeste !, Enrique Mufioz 2, Nils Krah 2 and Jean

Madrigal2018]

. Michel Létang '
Towards less parti

10t be ready for clinic yet

LUniv Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne,

Photon, proton d¢ oy ps “inserm, CREATIS UMR 5220, U1294, F-69373, Lyon, France. s ...
Towards GAN ? ' 2ynjversity of Lyon, Université Claude Bernard Lyon 1, CNRS/IN2P3, IP2I Lyon,
DL for scatter model F-69622, Villeurbanne, France

- by?

[B van der Heyden2020, Lee2019, Maier2018, Sharp2020]
U-Net, dense scatter estimation

DL for detector and source modelling / event selection

[Sarrut2018, Sarrut2019, Zatcepin 2020, Sarrut2021]
Depth-of-interaction resolution in pixellated PET detectors

Generalisation to other cases types?
Robustness?



Examples of Al for Monte Carlo

* Examp
* Examp

* Examp

el:
el:
e3:

earning Angular Response Function for SPECT simulation
earning Phase-Space for photon beam characterisation
earning Phase-Space for SPECT imaging simulation

Deep learning within Monte Carlo simulation



Example 1:
learning ARF for
SPECT simulation



SPECT/CT imaging system

Radionuclide
injection
99mTc, 177y ...

Emit gammas

Detect exiting
gammas

+ scintillator detector
(Nal, Csl, CZT)

"
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3D reconstruction (with CT)



SPECT Monte-Carlo simulation

* Long computation time
* Around 10 particles reaching detector
* Brute-force approach up to few days computation

e Platforms: o Collimator
 SImSET ‘Harrison1993]
 SIMIND Ljungberg1989]

_ %
GATE/Geant4  [Sarrut2014] I‘Q. 'EA I-[ . 6\ | GMEANT4

IMULATION TOOLKIT



SPECT Monte-Carlo simulation

 Several proposed Variance Reduction Techniques (VRT) :

* GIS: Geometrical Importance Sampling Beenhouwer2009]

°[ARF: Angular Response Function] Song2005, Descourt2010, Rydeen2018]
 MPS: Multiple Projection Sampling Beenhouwer2008, Liu2008]

* CFD: Convolution Based Forced Detection Liu2008]

* FFD: Fixed Forced Detection [Cajgfinger2017]

scintillation

event /
( N

photosensor

Collimator 200 m 1
[Braga2014]



Emitted Collimator Crystal

ARF: principles photons

| Detected

—

, ’ . photons

Angular Response Function

One count in
one energy
: ind
* Replace SPECT head detection WInEow
with tabulated response ,
, , Emitted
Incident particle at ARF plane photons |
use tables to get energy
windows probabilities / ’ | T~ Detection
b S > || probability
g * l in all energy
* Assume: 1| windows
* Spatially invariant |/ T~
* Detection depends on ARF‘ |
direction + energy plane Image plane

(crystal midpoint)



ARF Replace histogram tables

by a neural network

* Advantages:
* ARF tables needed to be computed only once

* Variance reduction: probability instead of counts
* Efficient, speedup x20-100 [Song2005, Descourt2010]

* Drawbacks:
* ARF tables needed for every detector configurations
 Large dataset needed to compute tables, 108 to 10! [Rydeen2018]
e Choice of table binning (3D histogram) not clear
* Speedup not explicitly evaluated



Artificial neural network

* Learn a predictive model from a training dataset h(X) =%

* Input & output space
* in: gamma energy and direction at the collimator entrance plane (3D)
 out: probability the gamma is detected in the it" energy window (nD)

* Training dataset

simulation, large source, complete energy spectra,
complete detector (collimator/crystal)
108 to 10° particles + Russian Roulette



Artificial neural network architecture

~ 10~ weights (2 MB)

* 3 hidden linear fully connected layers
* 400 neurons by layer

 Activation function: RelLu

* Loss function: multiclass cross-entropy

e Optimisation: Adam [Kingma2014]
(max 1000 iterations)

 Batch size: 5000 samples « = 0.0001 P Y T b R C H
* Adaptive learning rate @2

NVIDIA

\




Results

e Simulation of 7 .
circular sources of e ; ‘*
different energies

o ARF 4x10’
* Efficiency

1
E —
txai

Speedup: 20 - 1000

Analog 4x10’




Results

25 days CPU
time with
1010
particles
VS

2.5 hours
with 4.10/
particles

(> x200)

lodine
source

ARF 4e7

e -
-

Simulation SPECT
(profile)

ARF 4e/ + Poisson noise




Example 1: conclusion

using Artificial Neural Network

more consistent (binning)

Poisson noise

e Available in GATE (open-source)
www.opengatecollaboration.org

Similar efficiency, require less data to build,

10P Publishing Phys. Med. Biol. 63 (2018) 205013 (12pp) https://doi.org/10.1088/1361-6560/aae331
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Abstract

A method to speed up Monte-Carlo simulations of single photon emission computed tomography
(SPECT) imaging is proposed. It uses an artificial neural network (ANN) to learn the angular
response function (ARF) of a collimator—detector system. The ANN is trained once from a complete
simulation including the complete detector head with collimator, crystal, and digitization process. In

Physics in Medicine and Biology, 2018
.
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Example 2:
learning Linac phase-space



Radiation Therapy Linac head simulation

e- beam

—y

Few photons exiting

i .y VRT (brem splittin
Goal: determine beam characteristics ( plitting)

(energy, position, direction distributions)




Phase Space (PHSP)

® energy distribution (C)

* Store beam properties as Phase Space 2 “E 00

« A PHSP is a list of particles (around 108, 10°) 5 80 Lk

* Properties: E, X, y, z, dx, dy, dz, w, (time) > 70 51"'! i
* Advantages: ob o W 102

* Computed only once ol

* Fast to use 20 10

* Can be shared I

% 1 2 4 .S N v;s 1
° nergy (Me
Drawback Example of dependence of direction ¢ and energy

e Several GB
* When a cluster is used, should be shared among workers

e Limited number of particles



GAN: Generative Adversarial Network

[Goodfellow, 2014]
Goal: « learn » a multidimensional probability distribution

Random generation of high quality images

Well Trained
random ...
noise G S —
vector
Initial application : Generator
d rtlﬁ Cla l IMma ges ge ne ratl on Controlled image generation according to custom features
Well Trained
custom features:
. ; ; male,
https.//www.th!spersondoesn(?teX|st.com s =
https://www.thiscatdoesnotexist.com glasses

Generator


https://www.thispersondoesnotexist.com/
https://www.thiscatdoesnotexist.com/

GAN: Generative Adversarial Network

* Training dataset = € R?
* Dimensiond=7 (E,X,Y,Z,dX,dY,dZ)
e Samples of an unknown distribution Preal

* Generator (G(z;0¢) A —p T

* Discriminator D(zx; 6p) T ﬂ |0
—_— ]




GAN: Generative Adversarial Network

* Training dataset = € R?
* Dimensiond=7 (E,X,Y,Z,dX,dY,dZ)
e Samples of an unknown distribution Preal

Neural network

Alternate G and D optimisation updates



Loss function

* GAN notoriously difficult to train
* GAN z00 ... https://github.com/hindupuravinash/the-gan-zoo

 Alternative formulations: Wasserstein GAN [Arjovsky 2017]

e “Earth-mover” distance (EMD) : cost of the optimal transport
e Un-tracktable in practice, but approximated:

Jp (0p,0c) =E; [D(G(2))] — Ez [D()]

Je (0p,0c) = —E;|D(G(z))]


https://github.com/hindupuravinash/the-gan-zoo

Experiments

PHSP from IAEA web site

PHSP Size Nb of particles

Elekta PRECISE 6MV 2 files of 3.9 GB 1.3 x 10® photons each file
CyberKnife IRIS 60mm 2 files of 1.6 GB 5.8 x 107 photons each file

i BATF

255 PYTORCH &
& GeaAnT4

A SIMULATION TOOLKIT




Results

Marginal distributions of
the 6 parameters obtained
from the reference PHSP
and from the GAN, for
Elekta 6MV linac.




Results LINAC head

PHSP plane

Dose distribution in water from PHSP
108 primary photons
Beam
Compare dose between:
1. PHSP1 vs PHSP2
2. PHSP1 vs GAN

Voxel by voxel dose comparison Waterbox




8000 A

Results

7000 +

Distributions of relative 60007

differences between
e PHSP1 and PHSP2 20007

(V)]
y PHSP1 vs PHSP2 u=0.00%
[ ) C
PHSP1 and GAN 3 4000/ " PHSP1vs GAN u=-0.03%
Q
. . . . 3000 A
Vertical lines indicate
the mean differences
2000 -
Difference relative to
1000 A

the prescribed dose

-4.0% -2.0% 0.0% 2.0% 4.0%
Difference %



Example 2: conclusion

Using GAN to represent a Phase-Space is feasible

Final GAN model: few MB (vs PHSP = 4 GB)

Sufficient for dose computation

Training is difficult: hyperparameters, 511 keV peak, ...

Available in GATE www.opengatecollaboration.org

Perspectives :

e Could it be learned from less particles ?

» Detailed statistical analysis in progress

e Other applications of GAN within MC simulations

'O
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Generative adversarial networks (GAN) for compact beam source
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Abstract
A method is proposed and evaluated to model large and inconvenient phase space files used in Monte
Carlo simulations by a compact generative adversarial network (GAN). The GAN is trained based
on a phase space dataset to create a neural network, called Generator (G), allowing G to mimic the
multidimensional data distribution of the phase space. At the end of the training process, G is stored
with about 0.5 million weights, around 10 MB, instead of a few GB of the initial file. Particles are then
generated with G to replace the phase space dataset.

This concept is applied to beam models from linear accelerators (linacs) and from brachytherapy
seed models. Simulations using particles from the reference phase space on one hand and those
generated by the GAN on the other hand were compared. 3D distributions of deposited energy

Physics in Medicine and Biology, 2019
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Example 3:

learning phase-space
for SPECT



SPECT simulation

e Partl: previously, detector response (ARF)
e Part2: from emission to patient exiting gamma

=
- SPECT head detector
' e 1 Trackedgammas 2 Collimator, crystal, digitizer
T Z
r—— - -
:- E i 5
- ’

Reference analog Monte Carlo simulation



Training dataset

e Stepl: generate low stat dataset
* Step2: train a GAN

| SPECT head detector
| Collimator, crystal, digitizer

-
-
-

Tracked gammas ”

-
’ \
-
-
—
-—

* Step3:
* Use GAN a source
 Use ARF as detector

Reference analog Monte Carlo simulation

' ARF-nn

‘l‘

L)
\ °

> o ° a

\

Proposed neural network based simulation



Learning exiting gamma ?

* Track particles:
* From activity source ...
* ... to patient skin

* Allows to
* Consider scatter
* Consider complex source
* Consider pharmakocinetic

* Store
* E, position, direction




GAN

* Wasserstein GAN WGAN Loss = 1 [D)] - 5 [Dx)
e Several Gradient Penalties
° 4 hidden Iayers Grad. Pen. | Least Square Hinge

L1 (IIV&D(&)||1 — 1) max {0, (||VxD()|l1 — 1)}
e 700 neurons / layers L2 | (VD@ — 17 [18]  max{0, (VD)2 — 1)}
e 2%106 parameters L (IVsD(%)||oc — 1) max {0, (|| V< D)l — 1)}

Square Hinge (max {0, (||[V<D(X)||l2 — D})?  [19]

* 10° epoch 0-GP (IVxDR)[12)*  [20]

Table 1. Gradient penalties according to [21, 18, 20, 19]. In the equations,
x = ax + (1 — o)y, with x sampled from P, the real probability distribution of the
gammas from the training dataset, and y is sampled from P, the generated gamma
distribution. o ~ (0, 1) is sampled from the unit hyperball (following notation of [18]).
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e G f Ph _ 15000 o -
amma rrom ase-space GAN Ekine u=0.13 0=0.06
12500
* GAN generated gammas
10000
7500
5000
2500
0
0.05 0.10 0.15 0.20
Counts Counts Counts
1200 B PHSP X pu=-9.57 0=107.13 WS PHSP Y p=-58.310=123.07 | 000 B PHSP Z u=28.99 0=72.02
1000 i GAN X u=-10.38 0=107.46 1250 GAN Y y=-56.14 0=123.23 GAN Z u=30.26 0=71.82
1000 8000
800
6000
506 750
400 500 4000
200 250 2000 l
0 0 I —
—-100 100 -200 200 40 -100 -50 0 50 100
Counts Counts Counts
600 B PHSP dX p=-0.04 0=0.55 B PHSP dY u=-0.02 0=0.50 500 mm PHSP dZ y=-0.01 0=0.67
S0 pn GAN dX u=-0.05 0=0.55 600 W GAN dY u=-0.01 0=0.50 GAN dZ p=-0.01 0=0.67
400 560
400
300 400
200 200
200
100
0 0 0

-1.0 -0.5 0.0 0.5 1.0



2D projections
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Reference Monte Carlo
GAN-based Monte Carlo
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Test1: 3D reconstruction




Discussion

* Full 177Lu treatment (4 GBq)

* Analog computation time
e Around PPS = 5k (Particle Per Second)
* Around 1 day CPU for 5e8 particles per projection x 60 projections

* Computation time
* Low stats Monte Carlo simulation for training dataset: 10 h (4 GB)
* Training GAN: 4h (GPU)
e Using GAN: PPS = 600k



Discussion

Feasible
Accuracy: is it sufficient ?
Time gain ? To compare to other VRT

Available in GATE www.opengatecollaboration.org

GAN training
* Size of training dataset ?
* Gradient penalty ?
* How to optimize learning ?

* Transfert learning ?
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Modeling complex particles phase space with GAN for Monte Carlo
SPECT simulations: a proof of concept
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Abstract

A method is proposed to model by a generative adversarial network the distribution of particles exiting
a patient during Monte Carlo simulation of emission tomography imaging devices. The resulting
compact neural network is then able to generate particles exiting the patient, going towards the
detectors, avoiding costly particle tracking within the patient. As a proof of concept, the method is
evaluated for single photon emission computed tomography (SPECT) imaging and combined with
another neural network modeling the detector response function (ARF-nn). A complete rotating
SPECT acquisition can be simulated with reduced computation time compared to conventional
Monte Carlo simulation. It also allows the user to perform simulations with several imaging systems
or parameters, which is useful for imaging system design.

Physics in Medicine and Biology, 2021

How about one patient to the other ? "
-
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General conclusion

Still experimental

Al may (also) be useful to MC simulations

* ARF, GAN for phase-space, ...
* Faster, smoother, stronger

Available in GATE www.opengatecollaboration.org

New challenges

Learning dataset size ?
Learning time ?

Transfer learning ?
Conditional learning ?
Convergence guarantee ?
Final Accuracy ?

i BATE

Mont rlo

O

:' frontiers

Artificial Intelligence for Monte Carlo

simulation in medical physics
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https://github.com/OpenGATE/Gate
https://opengate.readthedocs.io
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Figure 3. Correlation matrices between all six parameters for phase space file (PHSP, left) and GAN (right), for Elekta 6 MV linac.

3.3e+01

,s-.cr | Relative
difference

1.6e+01

Figure 9. Slices of CT prostate image with deposited energy overlay (in MeV),
computed by phase space (PHSP, left) and GAN generated (center) particles. The right
image shows the dose difference Agan relative to the maximum dose (the maximum
difference was below 4%).



Virtual Source Models

e Several VSM have been proposed
* [Fix2001] [Grevillot2011] [Chabert2016], ...
* Histograms-based description (6D !): correlations bw variables
* Analytical function model, adapted sampling procedures

* Correlated-histograms with adaptive binning schemes, Kernel-Density Estimator (KDE)

* May be efficient but
» Simplification specific to one Linac type
* Not a unique standardized method
* Not easily generalisable to other Linac types (Cyberknife, Tomotherapy, FFF, etc)



