

Status of the CCOB-NB

Camera Calibration Optical Bench – Narrow Beam

J. Bregeon, A. Barrau, C. Combet, M. Migliore, G. Dargaud

CCOB Narrow Beam concept and implementation

- goals
- implementation
- tests

Optical alignment through ghosts images analysis

- simulations
- analysis
- data taking?

Outline

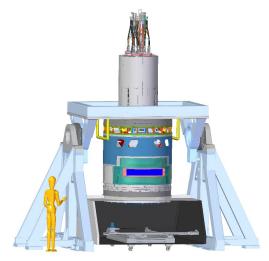
CCOB Narrow Beam concept and implementation

- goals
- implementation
- tests

Optical alignment through ghosts images analysis

- simulations
- analysis
- data taking?

- Commissioning of the integrated camera
 - precise measurement of the **optical throughput**
 - determination of the optics alignment/tilt
- The Camera Calibration Optical Bench Narrow Beam (CCOB-NB) is a calibrated and $(X,Y)+(\Theta, \Phi)$ positionable pencil beam monochromatic light source.
 - allows the illumination of the focal plane through the full optical system from a variety of incident angles in the 6 spectral bands
 - 2.5 mm wide monochromatic beam ($\delta\lambda\sim$ 1 nm)
 - from 300 nm to 1100 nm



In-operation view

Designed and built at LPSC, delivered to SLAC in Summer 2021

Rubin

Observatory

Hardware — table

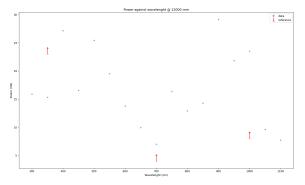
- black painted XY table with footprint 3000×3100 mm
- goniometer, rotative stand, moving arm for NIST diode
- cable guides for full exploration of the phase space

Hardware — source

- "hyperchromator" from Mountain Photonics: plasma source + 2 gratings to select wavelength
- multimode 200µm output fiber
- optical collimated solution with off-axis parabolic mirror
- stable high speed shutter

Hardware — CC and measurements Observatory

- Keithley Picoammeter coupled to NIST diode to measure absolute light flux
- High resolution camera to measure beam shape
- Ocean Optics spectrometer
- Everything remote controlled from a laptop through USB and network
 - XY and ⊖|Φ stands, Picoammeter, NIST diode, camera and spectrometer readouts
 - command line scriptable interface



Tests and performance

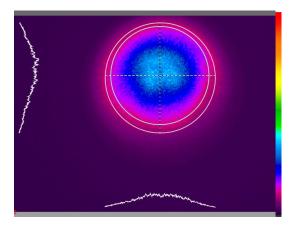
– power requirements satisfied on the full spectrum for \sim 1 nm wavelength width

Wavelength (nm)	Power (nW)	Required power (nW)
415	34	23 @ 415 nm
600	20	4 @ 300 nm
900	10	8 @ 1000 nm

Tests and performance

 2.5 mm wide circular beam at 1.2 m distance, on the full frequency range

- great stability of the light source and shutter



Tests and performance — shape

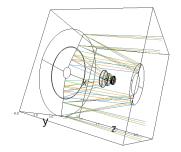
- symmetric beam shape

CCOB Narrow Beam concept and implementation

- goals
- implementation
- tests

Optical alignment through ghosts images analysis

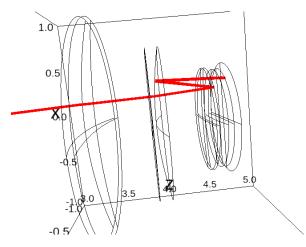
- simulations
- analysis
- data taking?



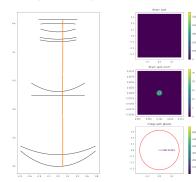
Ray tracing simulation software

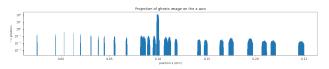
– Using Batoid [github:jmeyers314/batoid]

	# > Overview View page source
Search docs	
Dverview	Overview
batoid	C) Preces CI Boospiles (S) Cospectano (S) Cos
docs	batoid
Requirements	batola
Installation	A c++ backed python optical raytracer.
Tests	
	docs
	https://imevers314.gthub.io/batoid/overview.html
Optics Coordinate Systems	
boordinate systems Discurations	Requirements
Aedia	Batoid is known to work on MacOS and linux, using Python version 3.6+, and either the clang or
Tootings	gcc compiler with support for c++11.
kaihala	
	Installation
	PyPI
	Released versions of babold are available on pypel as source distributions. This means you will need at least c++14 compiler available and that setup and find it. This should hopefully be the case on most 'nik systems, in which case, the following ought to work:
	pip install batoid
	Github
	If Pypi doesn't work, then you can try cloning the source from github and running setup py. One miner Niccup in this case is that the batolid repoind/uses (pyblish) as a submodule, so when cloning for the first time, a command similar to one of the following should be used



- Remove mirrors and adapt coating to get light reflection





- Built as a Batoid plugin: ghosts simulation and analysis [github:bregeon/ghosts]
- example: beam
 10 cm off the x-axis

Ruh


Observatory

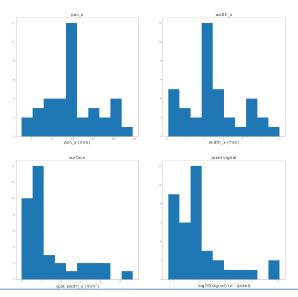
"ghosts": map

- 36 ghosts images of different size and brightness!

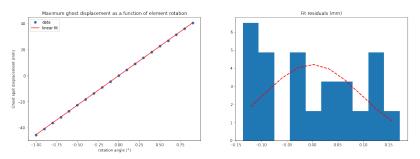
- Functions to move and tilt optics

- ghosts absolute position, size and intensity
- ghosts relative positions, sizes and intensity
- $\rightarrow\,$ data saved in pandas and serialized to parquet files

³ data frame 1.sort values(by=['name'])


	config	n_photons	beam_x	beam_y	beam_theta	beam_phi	index	name	pos_x	width_x	surface	pixel_signal
33	0	1000	0.1	0.0	0.0	0.0	33	(Detector, Filter_entrance)	-5.180695e-07	0.002087	3.419645	5.134283e+02
34	0	1000	0.1	0.0	0.0	0.0	34	(Detector, Filter_exit)	-5.250468e-07	0.002115	3.512375	5.204845e+02
29	0	1000	0.1	0.0	0.0	0.0	29	(Detector, L1_entrance)	3.065462e-08	0.000123	0.011970	1.247851e+05
30	0	1000	0.1	0.0	0.0	0.0	30	(Detector, L1_exit)	-2.349178e-07	0.000946	0.703138	2.211958e+03
31	0	1000	0.1	0.0	0.0	0.0	31	(Detector, L2_entrance)	-5.028983e-07	0.002026	3.222307	5.025719e+02
32	0	1000	0.1	0.0	0.0	0.0	32	(Detector, L2_exit)	-1.885446e-07	0.000760	0.452938	3.722838e+03
35	0	1000	0.1	0.0	0.0	0.0	35	(Detector, L3_entrance)	-5.500511e-07	0.002216	3.854855	4.937970e+02
36	0	1000	0.1	0.0	0.0	0.0	36	(Detector, L3_exit)	-6.035585e-07	0.002432	4.641336	4.270329e+0
10	0	1000	0.1	0.0	0.0	0.0	10	(Filter_entrance, L1_entrance)	-6.766032e-07	0.002726	5.832723	3.010159e+0
11	0	1000	0.1	0.0	0.0	0.0	11	(Filter_entrance, L1_exit)	-1.180802e-06	0.004757	17.764713	1.029083e+02
12	0	1000	0.1	0.0	0.0	0.0	12	(Filter_entrance, L2_entrance)	-1.057515e-06	0.004260	14.248464	1.335945e+02
13	0	1000	0.1	0.0	0.0	0.0	13	(Filter_entrance, L2_exit)	-5.815582e-07	0.002343	4.309119	4.599556e+02
14	0	1000	0.1	0.0	0.0	0.0	14	(Filter_exit, Filter_entrance)	-6.095641e-07	0.002456	4.734159	4.186601e+02
6	0	1000	0.1	0.0	0.0	0.0	6	(Filter_exit, L1_entrance)	-6.802227e-07	0.002740	5.895293	2.860273e+02
7	0	1000	0.1	0.0	0.0	0.0	7	(Filter_exit, L1_exit)	-1.187576e-06	0.004784	17.969128	9.770883e+01
8	0	1000	0.1	0.0	0.0	0.0	8	(Filter_exit, L2_entrance)	-1.064046e-06	0.004287	14.424998	1.267339e+02
•	0	1000	0.1	0.0	0.0	0.0	0	(Filler out 10 out)	E 0504000 07	0 000057	4 000 405	4 985 4984 00

In [10]: 1 from ghosts.analysis import make data frame 2 data frame 1 = make data frame(spots data)



- Scan on L2 rotation with fix beam at 10 cm off the x-axis
- Check the position of the ghost image furthest from the main
- \rightarrow linearity for small angles!

- Upgrade analysis to 2D
- Implement a basic CCD response: pixel, noise etc...
- Use realistic wavelength dependent reflectivity
- Gather information about realistic range of positions/rotations from mechanical engineers
- Full image analysis: find spots and characterize these properly
- Define a strategy for the real data analysis
 - build a big model from a large set of simulations
 - setup a kind of MCMC trying to fit a simulation to the data
 - find most informative ghosts to build an iterative procedure to find all alignment constants "one by one"
 - revive analytic fit from Barrau and Baumont
- Need to think about real camera data handling (large volume)

- Data taking shall happen at SLAC in Spring 2022 and on the mountain likely in 2023
- Need to define an efficient procedure for data taking
 - requires to have chosen an analysis strategy
 - balance between data taking time, data volume, achievable precision on constants

CCOB Narrow Beam concept and implementation

- goals
- implementation
- tests

Optical alignment through ghosts images analysis

- simulations
- analysis
- data taking?

- CCOB–NB designed and built at LPSC, sent and received at SLAC in Summer 2021 (after a long journey)
- Characterize the optical throughput of filter (and the whole optical system)
- Determine optics alignment constants through ghosts images analysis
 - current focus [github:bregeon/ghosts]
 - needed to define data taking at SLAC in Spring 2022
 - and on the mountain, at some point

- Marc Marton (SDI, conception mécanique, montage)
- Emmanuel Tourba (Electronique, câbleur)
- Eric Lagorio (Electronique)
- Myriam Migliore (Pôle Accélérateur et SI)
- Guillaume Dargaud (Contrôle Commande)
- Valérie Favre (administration)
- Nicolas Andres (stagiaire M1 2019)
- Aurélien Barrau
- Johan Bregeon
- Cécile Renault

Merci à tous !

- Confluence page: CCOB Thin Beam
- Confluence page: CCOB Thin Beam Hyperchromator
- [github:bregeon/ghosts]

