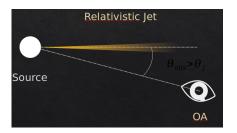


Unveiling GRB Orphan Afterglows in Rubin LSST data with FINK

ZTF public data through FINK

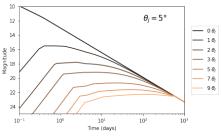
ZTF public data through FINK


- Thousands of GRBs observed in X– and $\gamma\text{-rays},$ including active optical follow–up observations on–ground
 - Swift and Fermi in space today, SVOM soon
 - redshift is important
- Population study through large catalogs: Fermi LAT and GBM, Swift BAT+
- Modeling work on–going for the prompt and afterglow emissions and for the progenitors populations
- But:
 - no single model can explain all observations
 - not all GRBs can be associated to a type of progenitor
 - not sure that all classes of progenitors are known
 - circum-stellar environment seems to show a large variety
 - no good understanding of the jet structure (Lorentz factor, opening angle, geometry, multiple emission zones)
 - each burst still seems different to all the previous ones...

Orphan afterglows

GRBs seen off-axis

- no γ rays for no jet boost
- \sim 100× more the number of known GRBs (Ghirlanda 2015)
- should exist if GRBs are relativistic and jetted...but none confirmed so far!
- an entire new population of "GRBs" to discover
- extend parameters phase space and complimentary information on:
 - overall geometry and energetic of the system
 - jet structure, choked jets, cocoons
 - progenitor population models



Observatory

Optical remanence

Afterglow @ 500 nm for different observing angles

Off–axis optical flux

- optical emission peaks later (hours to days)
- but maximum flux is dimmer.
- ⇒ prime target for Rubin survey
- $\Rightarrow~\sim$ 50/year (Ghirlanda 2015)
- Preliminary work done by Marina Masson for her M1 internship in Spring 2021
 - Choose a model, code and run simulations
 - Characterize roughly an orphan afterglow (OA) light curve
 - Look for OA-like light curves in ZTF public stream using the FINK science portal

Observatory

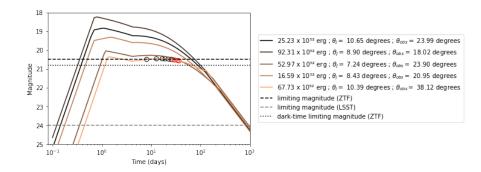
Emission model for the light curves ^{Ob}

- Studied a (large) bunch of papers, not always easy to find enough information to be able to implement models in a simple analytic form
- Converged on synchrotron afterglow model based on:
 - Sari, Piran et Narayan 1997 adiabatic case for flux
 - Zou, Wu et Dai 2006 for the viewing angle scaling factor

Sari, Piran et Narayan 1997 (cas adiabatique et phase de refroidissement lent)

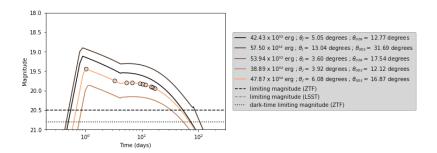
$$F_{\nu} = \begin{cases} (\nu/\nu_m)^{1/3} F_{\nu,max} & \nu_m > \nu \\ (\nu/\nu_m)^{-(p-1)/2} F_{\nu,max} & \nu_c > \nu > \nu_m \\ (\nu_c/\nu_m)^{-(p-1)/2} (\nu/\nu_c)^{-p/2} F_{\nu,max} & \nu > \nu_c \end{cases}$$

Zou, Wu et Dai 2006


 $F_{\nu}(\theta_{obs}, t) = a^3 F_{\nu/a}(0, at) \quad \text{avec } a = \frac{1-\beta}{1-\beta \cos\theta_{obs}}$ a le facteur d'échelle entre l'intérieur et l'extérieur du jet.

Light curves simulations

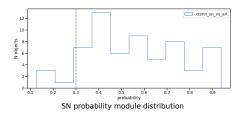
- Scanning parameters, looking at light curves
 - total energy from 10⁵¹–10⁵⁴ ergs
 - opening angle from $\theta_i \sim 5^\circ 15^\circ$
 - viewing angle from 2 to $5 \times \theta_j$



Light curves characteristics

- Minimal requirements to skim ZTF public data
 - magnitude greater than 18 (dim transients!)
 - > 3 detections in 10 days, and third point at lower flux than the second one
 - g-r color constant and \sim 0.3
 - transient duration is less than a month

ZTF public data through FINK

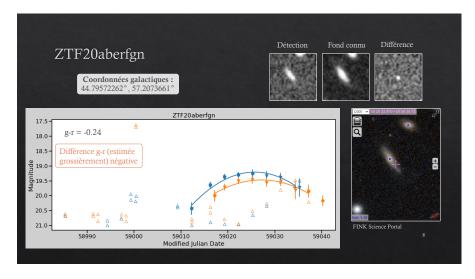


– FINK

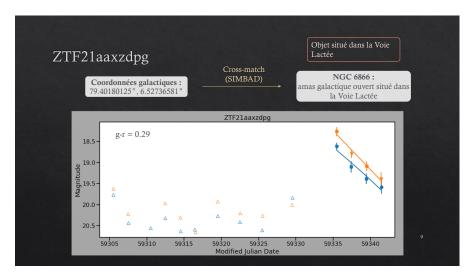
• conservative data extraction by Julien Peloton from the FINK data base

Looking into ZTF public stream

- Magnitude> 18 and more than 3 detections in 10 days
- \Rightarrow from 80 millions alerts (18 months of data available) to 100 objects per month
 - short list of candidates + REST API to get FINK data on disk for further selections
- Tighter selection
 - remove variable objects (< 30 days)
 - not a supernovae (FINK SN prob< 0.3)
 - \Rightarrow a handful of objects to scan through



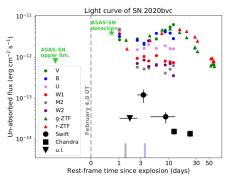
ZTF20aberfgn, in Corona Borealis



ZTF21aaxzdpg, in Cygnus

ZTF public data through FINK

- Work with "real" emission models
 - simulations from different models to understand systematics
 - [github:geoffryan/afterglowpy] is next: see arXiv:1910.11691, van Eerten 2018
- Study population models as well
 - to be able to produce realistic sample of light curves in terms Eiso, jet opening angle, redshift etc...
- Run multiple samples of simulations
 - per model class, bracketing parameters, (survey modes)
- Design and implement a new filter in FINK
 - simple cuts, machine learning, active learning, deep learning
 - likely work on a proper "color" module as well
 - started discussion within FINK, with the group working on GRBs (Damien, Manal, ...)
 - more discussions needed with supernovists !


- Multi-wavelength
 - optical, radio, spectroscopy, interfometry, X and gamma!
- Multi-messenger: GW, Neutrino, CR
- Consider excellent space localization but bad time localization (no T_0)
 - still possible to look for sub-threshold signals
- ightarrow Large data phase space
- $\rightarrow\,$ Need to define the best strategy to be able to confirm that objects are really orphan afterglows
- \Rightarrow Work within the Transient Sky (TS2020) initiative

SN2020bvc as an off-axis GRB afterglow

- Long (GRBs) are associated with very energetic, broad-lined supernovae of Type Ic–Broad Lines.
- Some SN Ic-BL not associated with GRBs could actually have an off-axis GRB as inner engine.
 - $\gamma\text{-}\mathrm{ray}$ emission is emitted in narrow jets but the SN emission is isotropic.

2020A&A...639L..11I

- X-ray, optical, radio follow-up
- compare with other SN and GRB afterglow model
- disentangle SN and off-axis GRB components
- derive possible GRB date and time, and viewing angle

- **PTF11agg**: "Discovery of a Cosmological, Relativistic Outburst via its Rapidly Fading Optical Emission" [2013ApJ...769..130C]
- ZTF19abvizsw (AT2019pim): "Liverpool Telescope observations of ZTF19abvizsw, a candidate untriggered GRB afterglow "[GCN 25643] and all GCNs associated to [Kool et al., GCN 25616]
- **ZTF20aajnksq** (AT2020blt): "ZTF20aajnksq (AT 2020blt): A Fast Optical Transient at z ~ 2.9 with No Detected Gamma-Ray Burst Counterpart" [2020ApJ...905...98H]
- SN2020bvc: "The broad-line type Ic SN 2020bvc: signatures of an off-axis gamma-ray burst afterglow" [2020A&A...639L..11I]
- **ZTF21aaeyldq** (AT2021any): "Revealing nature of GRB 210205A, ZTF21aaeyldq (AT2021any), and follow-up observations with the 4K×4K CCD Imager+3.6m DOT" [Nov. 2021, Journal of Astrophysics and Astronomy]
- But things are not so clear:
 "Low–efficiency long gamma–ray bursts: a case study with AT2020BLT" [2021arXiv210601556S]

- Nice exercise to understand and characterize optical afterglow light curves of off-axis GRBs, a.k.a. orphan afterglows
 - excellent to have FINK and ZTF public data
 - found a couple of interesting candidates
 - Going deeper with M2 internship + PhD thesis in 2022
- Wanderings
 - orphan afterglow models reliability / uncertainties
 - need for "full" Rubin image simulation + stack?
 - possible work on image analysis (specific DIA reprocessing)
- Astrophysics and cosmology implications
 - central engine, emission models, jet structure and geometry ...
 - progenitor populations
 - star formation rates (up to high redshift)
 - possible probes of the environment up to high redshift
- $\Rightarrow\,$ Need collaboration with GRB and SN experts

Orphan afterglow detection rates

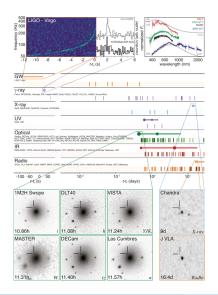
Table 2. Transien	t surveys in the optica	l and X-ray bands.
-------------------	-------------------------	--------------------

Survey	FOV	Cadence	Flim	Coverage	Lifetime	R _{OA}	$\langle T \rangle$	# OA
	(deg ²)		(mJy)	(deg ² night ⁻¹)	days	$(deg^{-2} yr^{-1})$	days	yr ⁻¹
PTF	7.8	1m–5d	1.17×10^{-2}	1000		1.5×10^{-3}	1[0.2-3.8]	1.5
ROTSE-II	3.4	1d	1.17×10^{-1}	450		5.2×10^{-4}	0.4[0.1-1.7]	0.1
CIDA-QUEST	5.4	2d-1yr	4.60×10^{-2}	276		8.0×10^{-4}	0.5[0.1-2.3]	0.1
Palomar-Quest	9.4	0.5h-1d	1.17×10^{-2}	500	2003-2008	1.5×10^{-3}	1[0.2-3.8]	0.8
SDSS-II SS	1.5	2d	2.68×10^{-3}	150	2005-2008	3.2×10^{-3}	1.6[0.4-6.3]	0.8
Catilina	2.5	10m-1yr	4.60×10^{-2}	1200		8.0×10^{-4}	0.6[0.1-2.4]	0.6
SLS	1.0	3d-5yr	5.60×10^{-4}	2	2003-2008	5.2×10^{-3}	2.8[0.8-11]	0.03
SkyMapper	5.7	0.2d-1yr	7.39×10^{-2}	1000	2009	6.4×10^{-4}	0.5[0.2-2.0]	0.3
Pan-STARRS1	7.0	3d	7.39×10^{-3}	6000	2009	2.0×10^{-3}	1[0.3-4.4]	12
LSST	9.6	3d	4.66×10^{-4}	3300	2022	5.1×10^{-3}	3[0.8-11]	50 2
Gaia	0.5×2	20d	3.00×10^{-2}	2000	2014-2019	10^{-3}	1[0.5-5]	2
ZTF *	42.0	1d	2.00×10^{-2}	22 500	2017	1.1×10^{-3}	0.8[0.4-4.8]	20
RASS	3.1		4.00×10^{-5}	12 000	6 months	8.0×10^{-4}	1[0.3-4.4]	10
eROSITA	0.8	6 months	2.00×10^{-6}	4320*	4 years	3.0×10^{-3}	2[0.5-6.5]	26

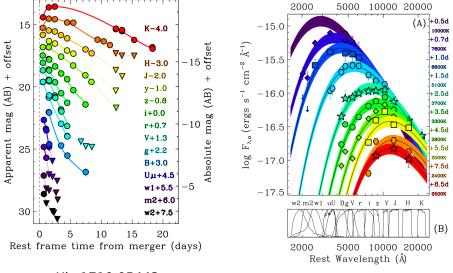
Notes. Ongoing and future surveys are marked in boldface. Parameters of the optical surveys, field of view (FOV), cadence, limiting flux F_{lim} , coverage and lifetime are from the compilation of Rau et al. (2009). The rate of orphan afterglow R_{OA} above the survey limiting flux F_{lim} , through the flux density distribution reported in Fig. 2. The average OA duration above this flux limit (T) is derived from Fig. 3 and from the parameters of the linear fits reported in Table 1 (minimum and maximum durations are shown in brackets). The last column shows the number of OAs per year detectable by the reported surveys. For the X-ray the sky coverage is intended for 24 h. ⁽⁶⁾ See http://www.ptf.caltech.edu/ ztf and Bellm (2014).

- ZTF of interest already (use public alert stream)
- Rubin LSST is the most promising

- Identify 'optical' orphan afterglows
 - multi-wavelength data needed for Rubin candidates
 - optical, radio, spectroscopy
- Find origin of some orphan afterglows
 - consider excellent space localization and sub-threshold signals
 - but bad time localization (no T_0)
 - multi-messenger: GW, GRB, CR, Radio, Neutrino
 - $ightarrow\,$ lots of stuff to do if any signal found
- GRB and progenitors physics
 - need theoretical modeling
 - system geometry, jet structure, star environment, population
 - kilonovae and supernovae
- Cosmology (reionization)
 - population of (Pop III) massive stars as a function of redshift (Long GRBs)



GW 170817



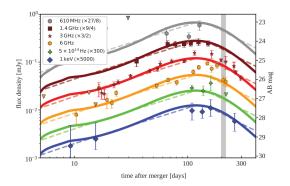
- GW 170817 / GRB 170817A
- 70 observatories at different wavelengths and messengers
- long term monitoring on–going
- near threshold GRB for the Fermi–GBM
- low total isotropic energy $E_{iso} \sim 10^{47} \text{ erg}$

GW 170817 Optical light curves: 20 day

ENERGY

24

Office of


Science

arXiv:1710.05443

GW 170817 4 years afterglow

- Ghirlanda et al 2021, Science
- follow-up observations during the past 4 years
- likely an off-axis successful jet
 - opening angle $\sim 3.5^\circ$
 - viewing angle $\sim 15^{\circ}$

SN2020bvc spectra

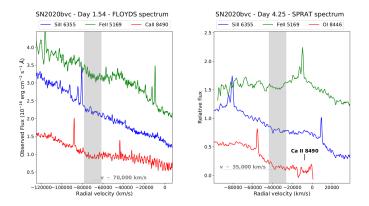


Fig. 3. (Left panel) The FLOYDS spectrum of SN 2020bvc observed one day after the SN discovery and centered on three different atomic transitions (Fe n 5169, Sin 6355 and Ca nt 8490). The gray band marks the presence of an absorption feature at $v_{esp} \approx 70,000$ km/s, common to Fe u and Ca n while it is not observed for Si n. (*Right panel*) The SPRAT spectrum of SN 2020bvc observed three days after the SN discovery. In this panel the red spectrum is centered on the 0 18446 line, with the position of the features indicated for a velocity of $v_{esp} \approx 35,000$ km/s, common to Fe n and O and barely discernible for the Sin line.

