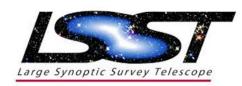
Joint studies of the Gamma-ray Bursts phenomena with

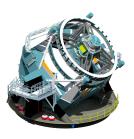
the SVOM mission and the Vera Rubin Observatory

Damien Turpin (CNES/CEA-Saclay Irfu)

on behalf of Julien Peloton (IJCLab), Anaïs Moller (Swinburne), Emille Ishida (LPC), Nicolas Leroy (IJCLab), Bertrand Cordier (CEA), Manal Yassine (IRAP), Olivier Godet (IRAP), Jean-Luc Atteia (IRAP)



Rubin Observatory



Journées LSST France LPNHE Nov, 23th 2021

Outlines

SVOM and its GRB science in a nutshell

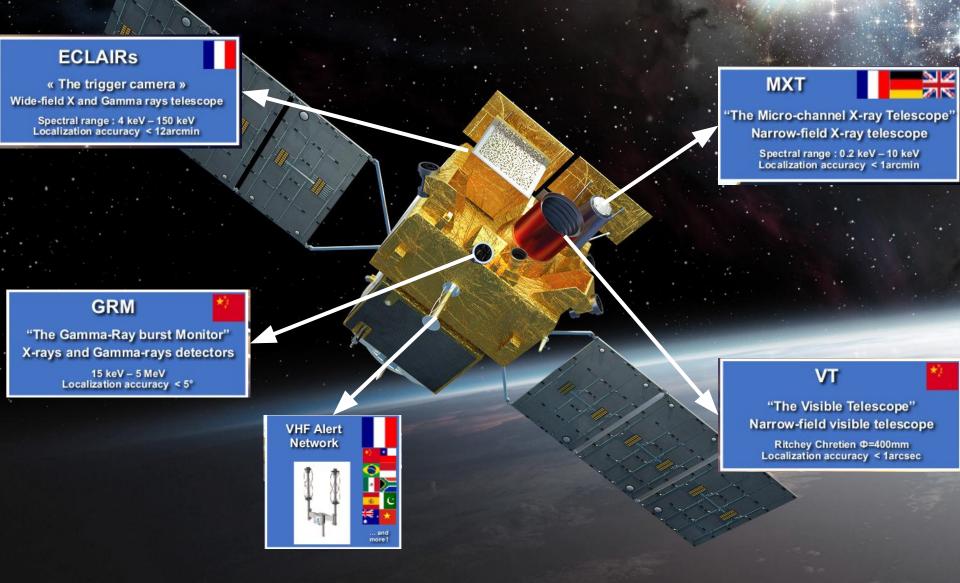
FINK
the SVOM's gateway to the
Vera Rubin transient sky

The SVOM Collaboration

China (Pl J. Wei)

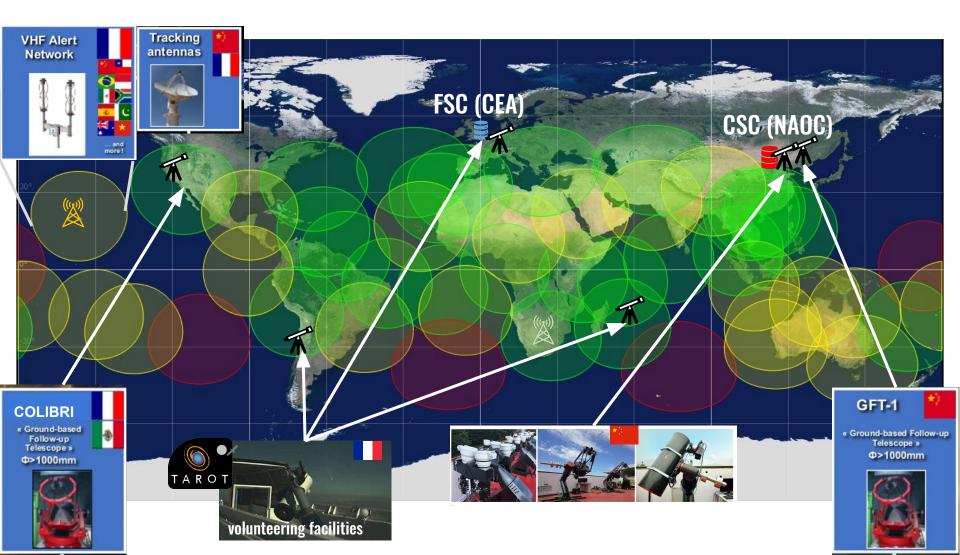
- SECM Shanghai
- Beijing Normal University
- Central China University Wuhan
- Guangxi University Nanning
- IHEP Beijing
- KIAA Peking University
- Nanjing University
- NAOC Beijing
- National Astronomical Observatories
- Purple Mountain Observatory Nanjing
- Shanghai Astronomical Observatory
- Tsinghua University Beijing
- Mexico UNAM Mexico

France (PI B. Cordier)


- CNES Toulouse
- APC Paris
- CEA Saclay
- CPPM Marseille
- GEPI Meudon
- IAP Paris
- IRAP Toulouse
- IJCLab, Orsay
- LAM Marseille
- LUPM Montpellier
- OAS Strasbourg
- UK University of Leicester

Germany

- MPE Garching
- IAAT Tübingen

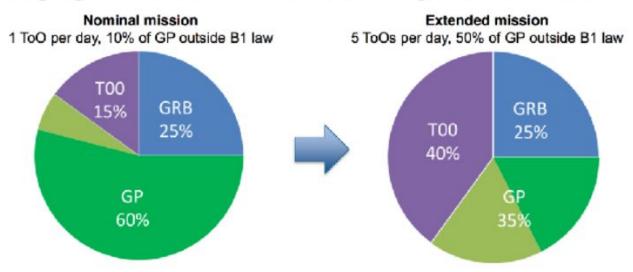


The Space-based multi-band astronomical Variable Object Monitor (SVOM) satellite

Launch: Early 2023 for 3 (nominal) +2 (extended) years

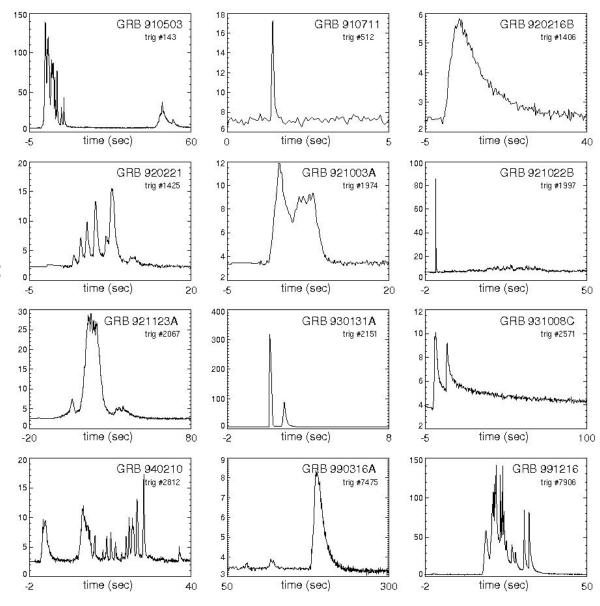
The SVOM ground segment

- 1. An alert network: ~40 VHF receivers on Earth / 65% of the alerts received within 30s at the French Science Center (FSC) / We are also planning to be connected to the chinese Beidou network.
- 2. A telescope network for the SVOM follow-up activities

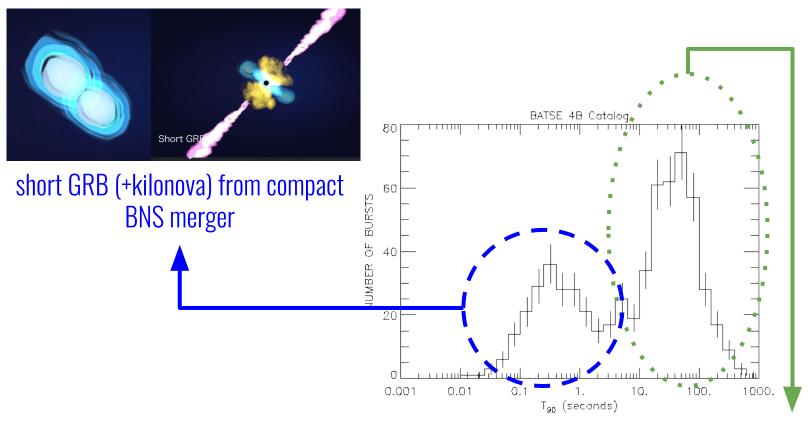


The SVOM scientific programs

SVOM will be an open observatory: **general program (GP)** observations will be awarded by a TAC (a SVOM co-I needs to be part of your proposal). 10% of the time can be spent on low Galactic latitude sources during the nominal mission (up to 50% during the extended mission).

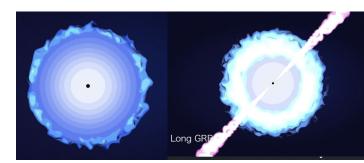

The Core Program (GRB). GRB data products (position, light curve, pre-computed spectra will be made public immediately)

Target of Opportunity (ToO) program: alerts sent from the ground to the satellite. Initially 1 ToO per day focussed on time domain astrophysics including multimessengers. ToO program devoted time increases during extended mission.

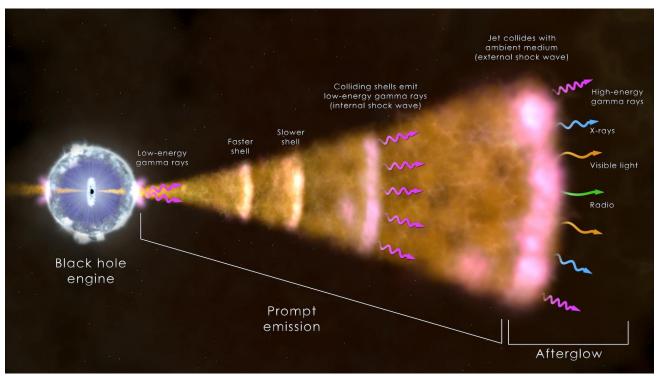


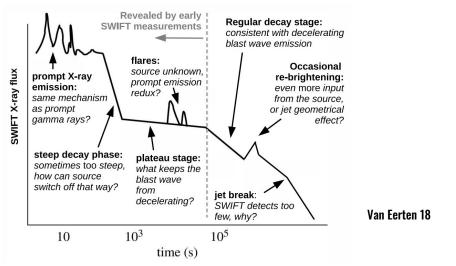
Gamma-ray Bursts in a nutshell

From the NASA CGRO mission BATSE instrument: 20keV - 1MeV

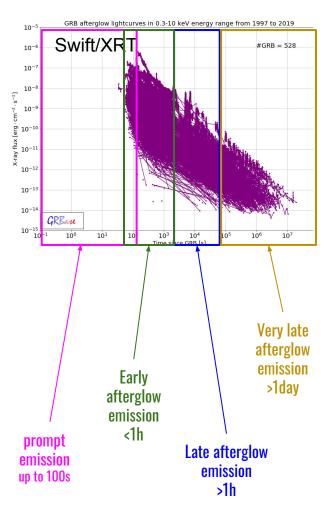


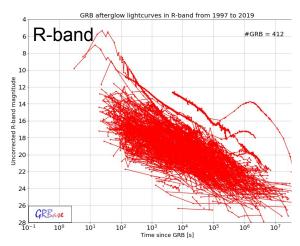
Gamma-ray Bursts in a nutshell

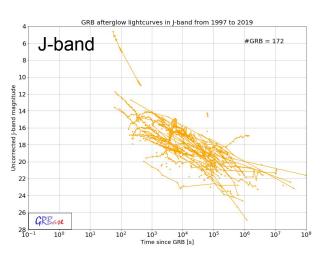


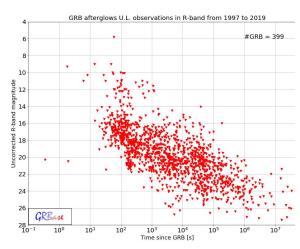

Long GRB from type lb/c supernovae

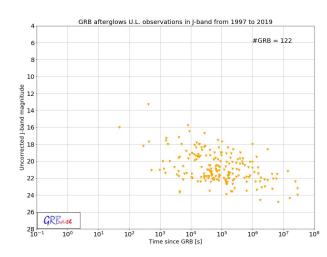
These two cataclysmic events can launch a (ultra) relativistic jet in the interstellar medium

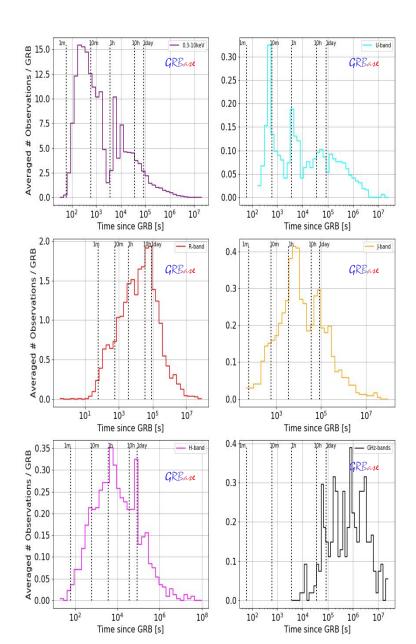



Gamma-ray Bursts in a nutshell



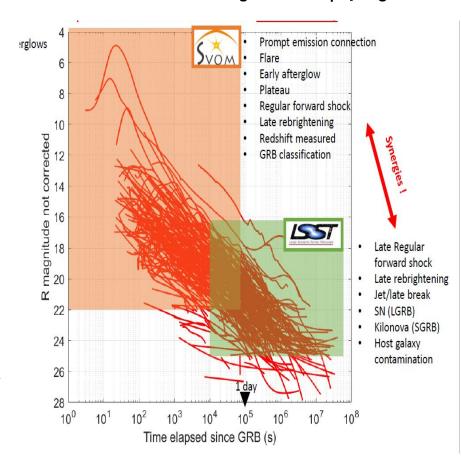



State of the art of GRB follow-up observations



State of the art of GRB follow-up observations

Take away message from past Swift follow-up campaigns

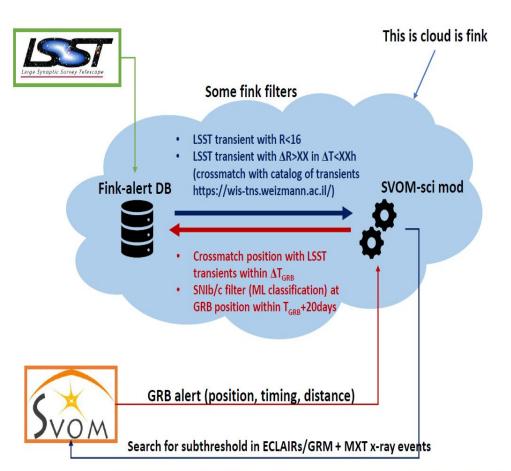

- 1. The prompt emission (T_{GRB} up to 100s) is usually poorly covered in all bands (except for the longest GRBs in x-rays): it is a very complicated task!
- 2. The early afterglow emission (T_{GRB}<1h) is already well covered in x-rays BUT barely in R-band and poorly covered in IR bands. SVOM job!
- 3. The late afterglow emission (T_{GRB}>1h) is well covered in x-rays and R-band and reasonably covered in IR bands. SVOM should perform pretty well!
- 4. The very late afterglow emission (T_{GRB}>1day) is poorly covered in all bands. Beyond the scope of the SVOM instruments. VR-LSST could help!

The SVOM/VR-LSST synergies for the GRB science

GRB Science case

GRB science case	SVOM tasks	LSST advantages
General GRB science	Complete catalog of GRB in terms of observation coverage from IR-gamma- rays	 Great sensitivity Auto survey of some SVOM GRB positions for several days/weeks
Orphan/untriggered GRB	Systematic searches for subthreshold events	 Great sensitivity Sky survey Transient alert mode
High-z GRB	• Study the physics and environment of the GRBs at z>4	Great sensitivity
LGRB-SNe connection LGRB progenitor study	 Provide LGRB classification + redshift + flux prediction of the potential SNe Can trigger spectro follow-up with large telescopes 	 Great sensitivity Sky Survey at daily cadency
SGRB-merger connection kilonova	 Provide SGRB classification Answer to LVC alerts with all SVOM instruments 	 Great sensitivity Sky Survey at daily cadency
GRB-neutrino connection	Answer to neutrino alerts with all SVOM instruments	Great sensitivity

SVOM/LSST GRB afterglow follow-up synergies



FINK the SVOM's gateway to the Vera Rubin transient sky

a unique French broker to prepare the future of the time-domain astronomy

The SVOM scientific module to be setup in Fink for performing SVOM/LSST GRB science

- Searches for GRB afterglow (also supernovae/kilonovae) candidates in the LSST stream as soon as a SVOM GRB is detected and localized.
- 2. Searches for untriggered/subthreshold SVOM GRB counterparts from LSST identified orphan afterglows.

 (see the talk of Johan Bregeon about searches for untriggered/orphan GRB afterglows in LSST alert stream)

GRB detected by SVOM

RA, dec, error radius, Trigger time

LSST alert stream (prefiltered by FINK or not)

RA, dec, Trigger time, mags

GRB detected by SVOM

RA, dec, error radius, Trigger time

1/ Space and time crossmatch

LSST alert stream (prefiltered by FINK or not)

RA, dec, Trigger time, mags

candidate list 1 (bronze events, several tens to hundreds)

GRB detected by SVOM

RA, dec, error radius, Trigger time

1/ Space and time crossmatch

LSST alert stream (prefiltered by FINK or not)

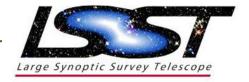
RA, dec, Trigger time, mags

2/ Science filter

Proba not associated by chance > 5σ

candidate list 2 (silver events, severals up to tens)

GRB detected by SVOM



RA, dec, error radius, Trigger time

1/ Space and time crossmatch

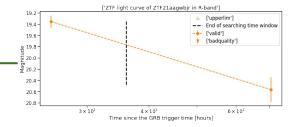
LSST alert stream (prefiltered by FINK or not)

RA, dec, Trigger time, mags

2/ Science filter

- source type = SN, ambiguous or unknown
- Proba Real/bogus > 0.9
- Proba not associated by chance > 5σ

candidate list 1 (bronze events, several tens to hundreds)



candidate list 2 (silver events, severals up to tens)

3/fast transient filter

- g-r > XX
- Δ mag_r > 0.3 mag . day⁻¹

candidate list 3 (few, gold events)

GRB detected by SVOM

RA, dec, error radius, Trigger time

1/ Space and time crossmatch

LSST alert stream (prefiltered by FINK or not)

RA, dec, Trigger time, mags

2/ Science filter

source type = SN, ambiguous or unknown

19.6 <u>υ</u> 19.8 ·

20.0

20.4

- Proba Real/bogus > 0.9
- Proba not associated by chance > 5σ

candidate list 1 (bronze events, several tens to hundreds)

3/fast transient filter

- g-r > XX
- Δ mag_r > 0.3 mag . day⁻¹

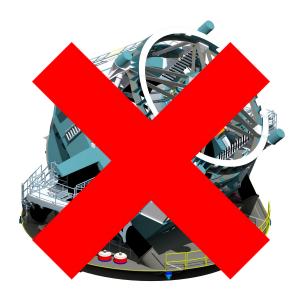
candidate list 3 (few, **gold events**) - End of searching time window

Time since the GRB trigger time [hours]

4/Candidate validation

visual inspection by SVOM scientists Complete the SVOM afterglow data set for further analysis

The FINK/SVOM sci. module will be run:


- offline after each night of VR/LSST (ready!)
- online if a GRB is detected during the night at VR-LSST (will be implemented soon by the end of the year)

One problem remains.....

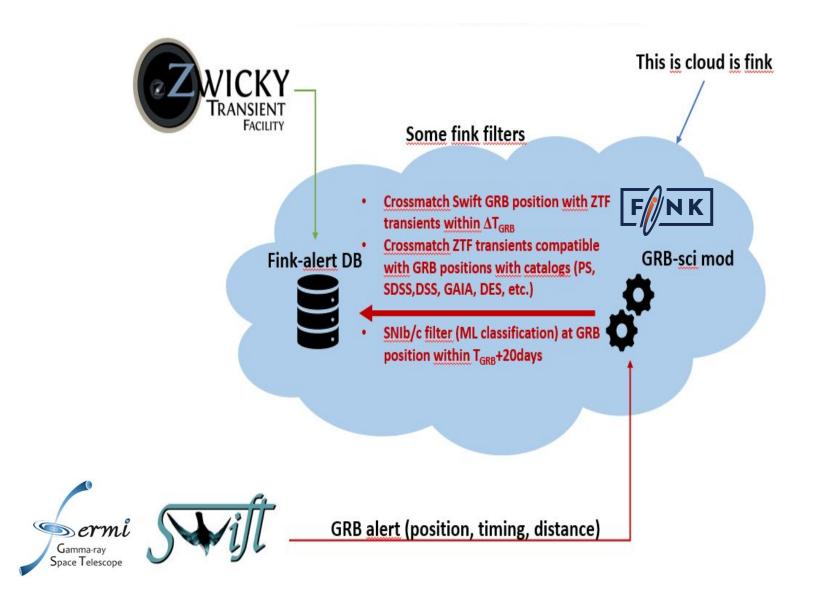
The FINK/SVOM sci. module will be run:

- offline after each night of VR/LSST (ready!)
- online if a GRB is detected during the night at VR-LSST (will be implemented soon by the end of the year)

One problem remains for now...

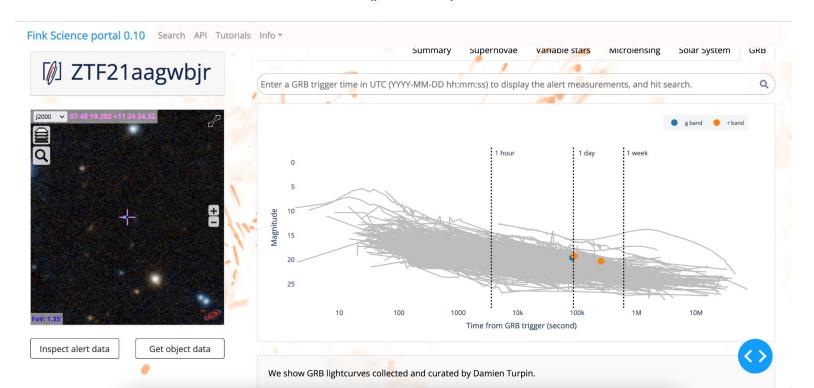
The FINK/SVOM sci. module will be run:

- offline after each night of VR/LSST (ready!)
- online if a GRB is detected during the night at VR-LSST (will be implemented soon by the end of the year)


But we have...

Prior to SVOM & LSST: Swift/Fermi & ZTF era

Swift/Fermi & ZTF era: results with Fink


ZTF afterglows from Swift GRBs :

0

ZTF afterglows from Fermi GRBs :

1 found with the GRB science module ! ZTF21aagwbjr association confirmed with GRB 210204A

Light curve visualization of the GRB afterglow candidates in FINK (preliminary)

Conclusions & perspectives

- There is a room for common studies of the GRB afterglows between SVOM (early phases) and VR-LSST (very late phases) using the public alert stream
- The SVOM Collaboration (+ GRB experts) is developing a FINK/SVOM sci. module to search for GRB optical afterglow counterparts in ZTF/LSST alert stream
- The GRB module is also publicly available and will be constantly upgraded (https://github.com/dturpin-svom/fink_grb_module)
- The results of the GRB sci. module are publicly available in FINK!
- The offline search for GRB afterglows is now running on Swift and Fermi to finely tune the different parameters of the filters.
- We found one confirmed GRB afterglow with our filters! ZTF21aagwbjr GRB210204A!
- The online search in ZTF alert stream will be available soon (by the end of the year)
- Blind searches for optical afterglows in ZTF/LSST data streams will be investigated (*see the talk of J. Bregeon*). In case of a discovery, SVOM will search for subthreshold events in the ECLAIRs data.
- Search for KN/SN candidates potentially associated to SVOM S/L GRBs must be done systematically too