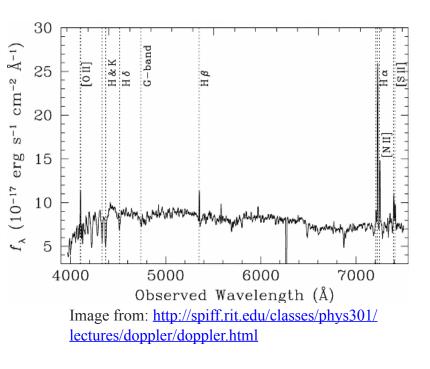
Photometric Redshift Estimation with Convolutional Neural Networks and Galaxy Images: A Case Study of Resolving Biases in Data-Driven Methods

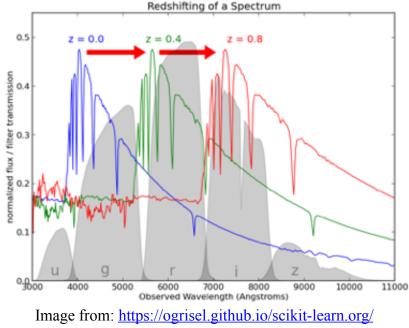
Qiufan Lin¹ Advisors: Dr. Dominique Fouchez¹, Dr. Jérôme Pasquet²

¹Aix Marseille Univ., CNRS/IN2P3, CPPM, Marseille, France ²UMR TETIS, Univ. Montpellier; AgroParisTech, Cirad, CNRS, Irstea, Montpellier, France

Spectroscopic redshift (spec-z) v.s. Photometric redshift (photo-z)

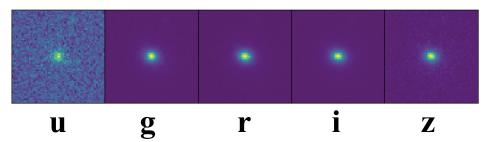


• Spec-z by spectroscopy

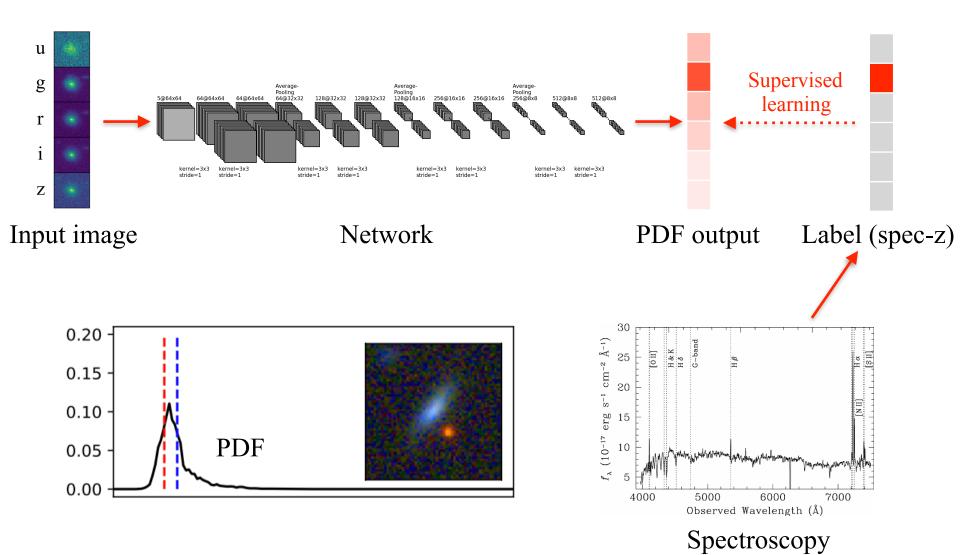


sklearn-tutorial/tutorial/astronomy/regression.html

• Photo-z by images

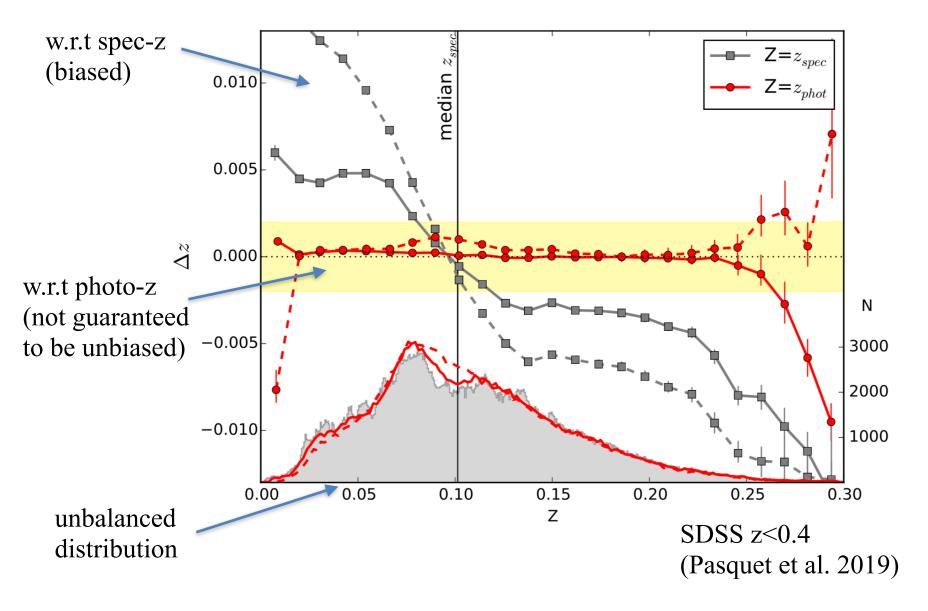


 Photometric redshift (photo-z) estimation as a classification problem supervised by spectroscopic redshift (spec-z)

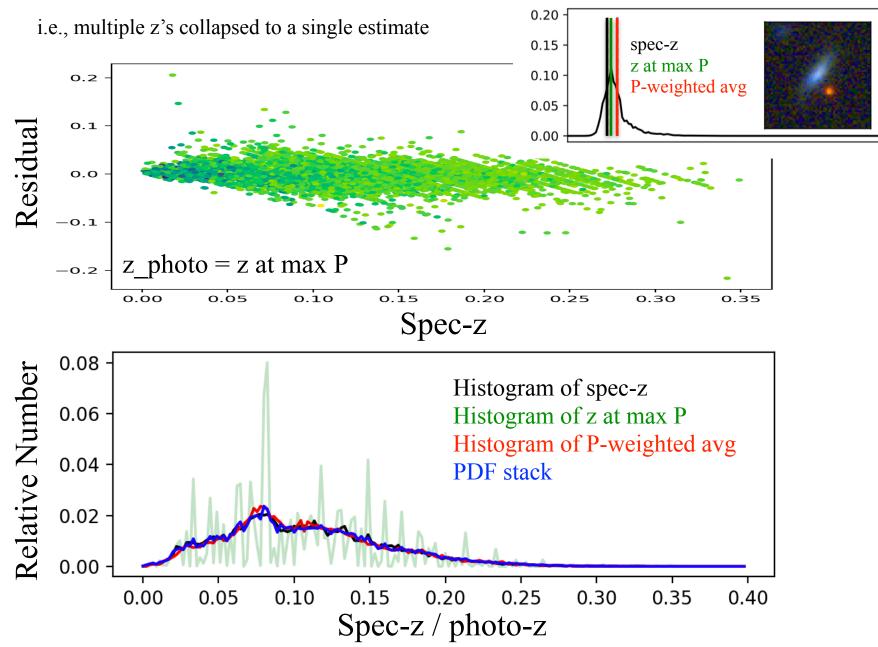


Bias 1: residuals as a function of spec-z or photo-z

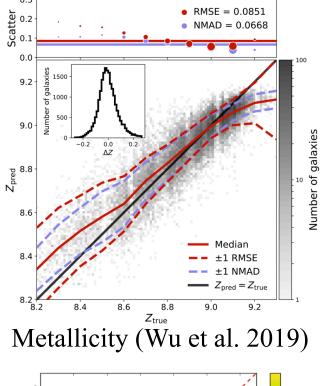
Residual = $(z_photo - z_spec) / (1 + z_spec)$

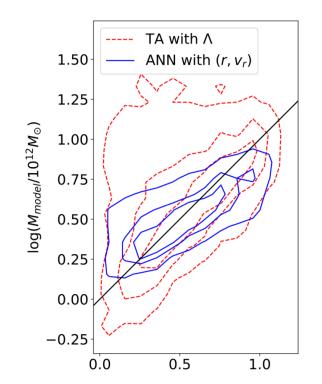


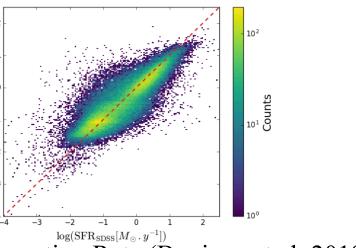
Bias 2: mode collapse



Biases exist in various classification & regression applications

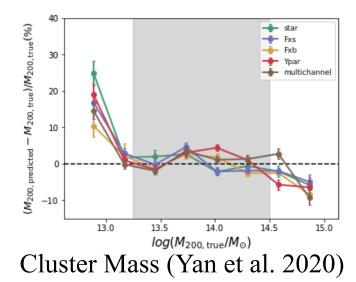




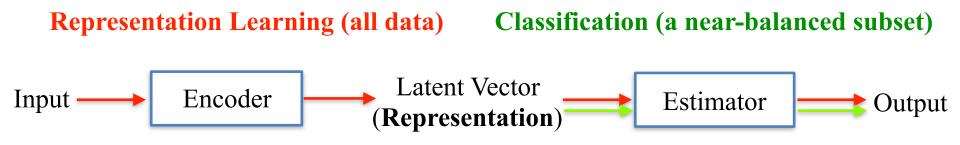


Star Formation Rate (Bonjean et al. 2019)

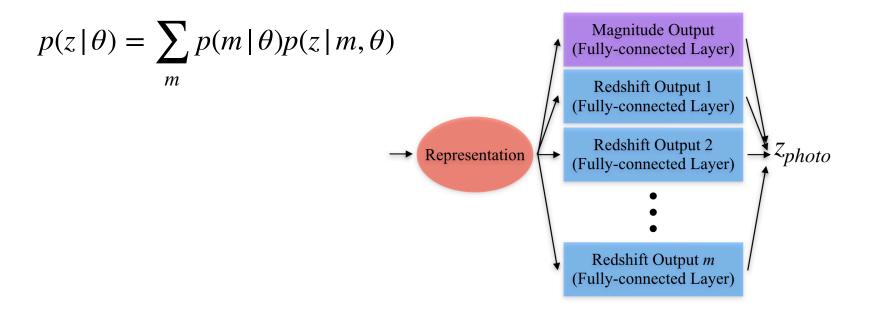
 $\log({
m SFR}_{
m ML}[M_\odot \, . \, y^{-1}])$



Splitting the learning of representation and classification



Multi-channel outputs (redshift & r-band magnitude)



Bias correction procedure

Causes of biases due to
data, model, etc.

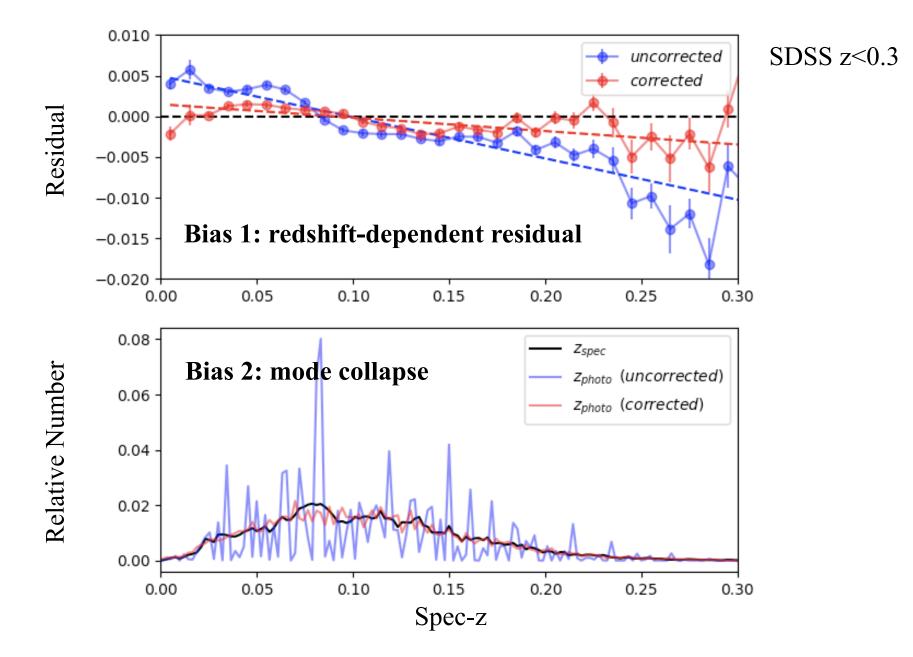
$$p'(z_{photo} | D) \sim \int q(z_{photo} | z_{spec}, D) p(z_{spec} | D) dz_{spec}$$

 $p''(z'_{photo} | D) \sim \int \tilde{q}(z'_{photo} | z_{photo}, D) p'(z_{photo} | D) dz_{photo}$
Corrections according to

pre-estimated redshifts

Bias	Cause	Correction
Over-population- induced residuals	Over-density	Construct near- balanced subset
Under-population- induced residuals	Under-density	Shift labels
Mode collapse	Local over-confidence	Use soft labels

Biases w.r.t spec-z are reduced by our method



Correcting biases w.r.t photo-z

- Biases w.r.t photo-z not compatible with biases w.r.t spec-z
- First perform correction for spec-z then perform calibration for photo-z

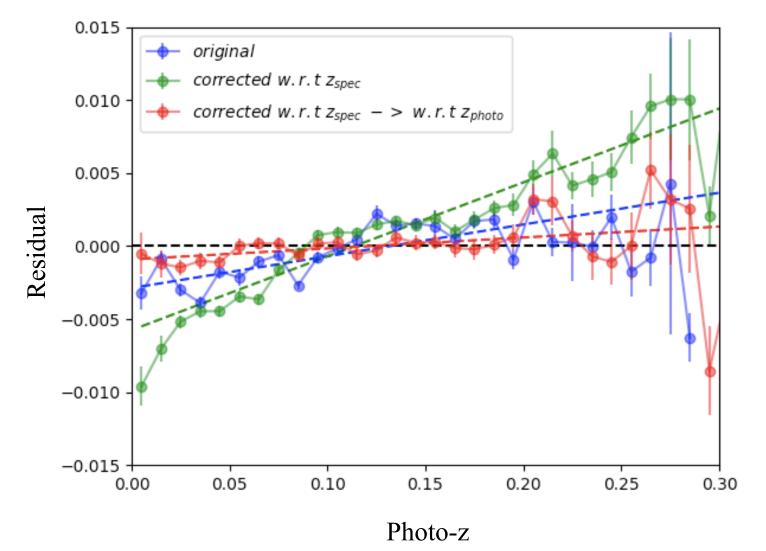
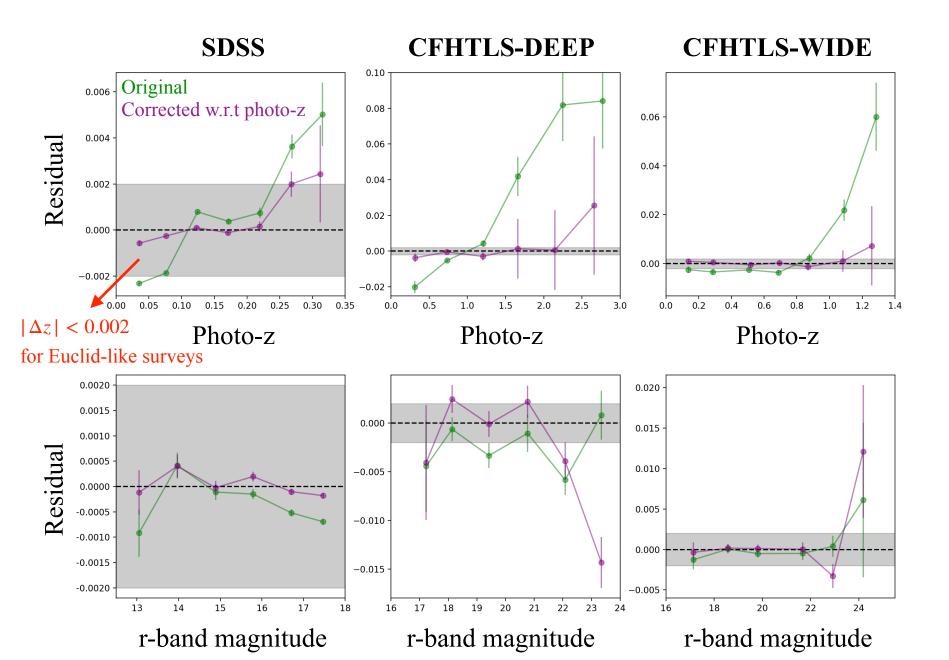


Photo-z calibration for cosmological analysis

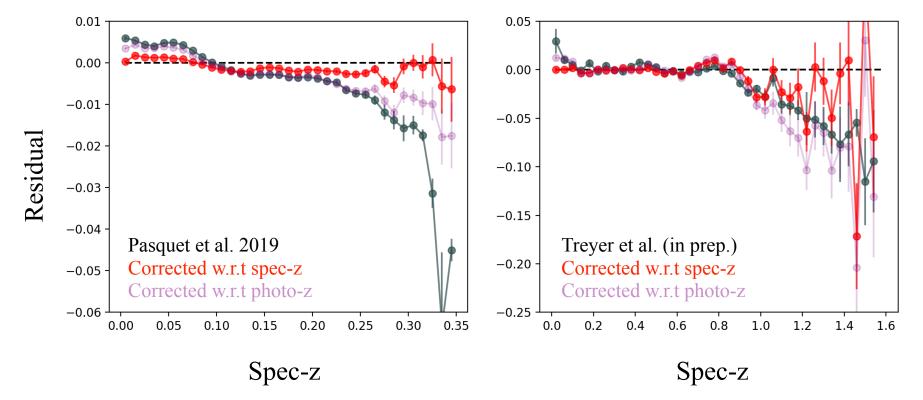


Comparison with state-of-the-art results

- Bias correction w.r.t spec-z

SDSS

CFHTLS-WIDE



Comparison with state-of-the-art results (continued)

- Bias correction w.r.t photo-z

0.030 0.30 Pasquet et al. 2019 Treyer et al. (in prep.) 0.025 0.25 Corrected w.r.t spec-z Corrected w.r.t spec-z Corrected w.r.t photo-z Corrected w.r.t photo-z 0.020 0.20 0.015 0.15 Residual 0.010 0.10 0.005 0.05 0.000 0.00 -0.005 -0.05 -0.010-0.100.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 Photo-z Photo-z

SDSS

CFHTLS-WIDE

Conclusion

- Two forms of biases.

- Redshift-dependent residuals (Over-population-induced & under-population-induced)
- mode collapse

- Key 1: split the learning of representation and classification.

- The representation potentially contains all required information (though biased).
- Re-train the classification part for resolving biases or other needs.
- Balance the number density of training data.
- Adjust the target output (= shift & soften labels).

- Key 2: Correct biases separately for spec-z and photo-z.

- First correct the biases w.r.t spec-z.
- Calibrate for photo-z if needed.

- Prospect

- Combined with other photo-z methods.
- Generalized to regression problems and used in other applications.

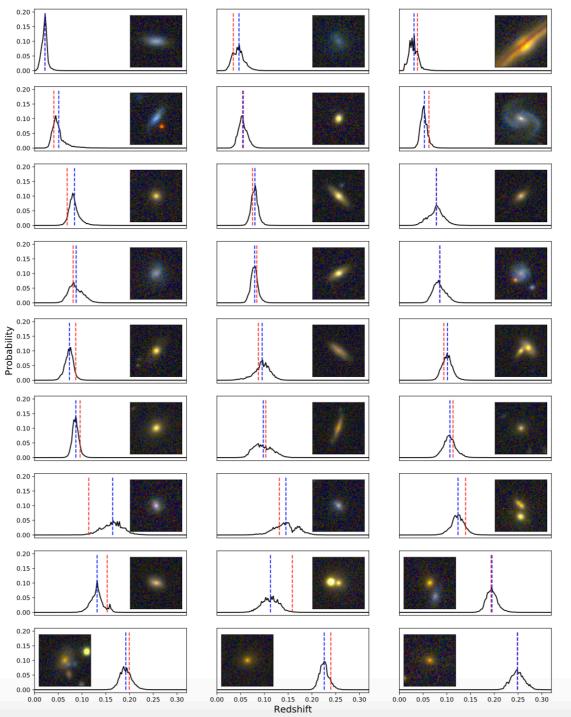
Acknowledgement

This project has received funding from the European Union's Horizon 2020 research and innovation programme under the Marie Skłodowska-Curie grant agreement No713750. Also, it has been carried out with the financial support of the Regional Council of Provence-Alpes-Côte d'Azur and with the financial support of the A*MIDEX (n° ANR-11-IDEX-0001-02), funded by the Investissements d'Avenir project funded by the French Government, managed by the French National Research Agency (ANR).

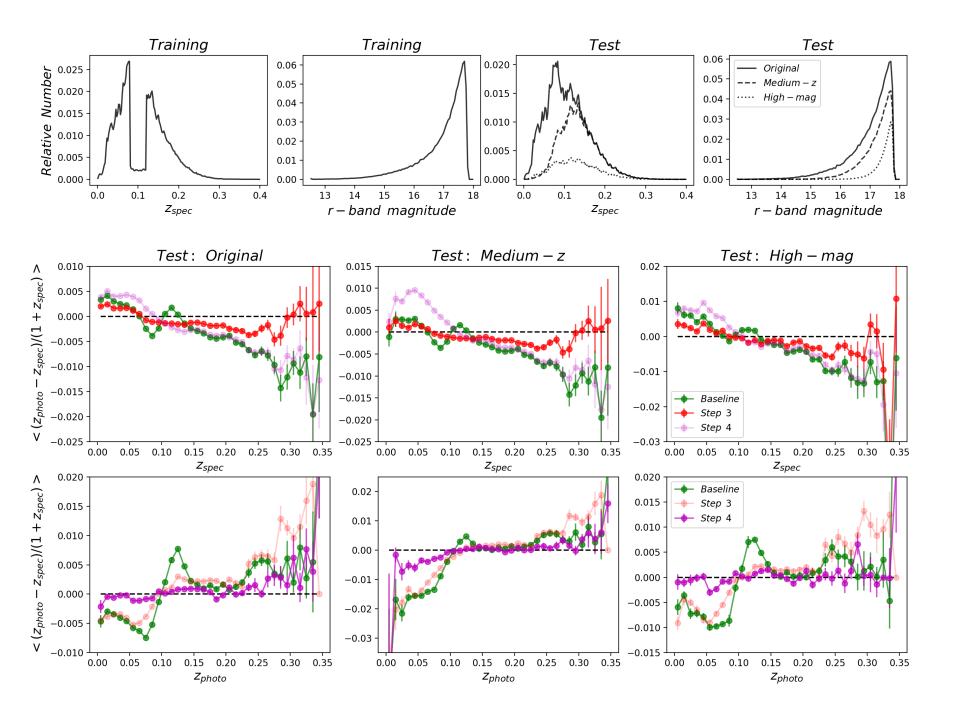
Côte d'Azur

Back-up slides

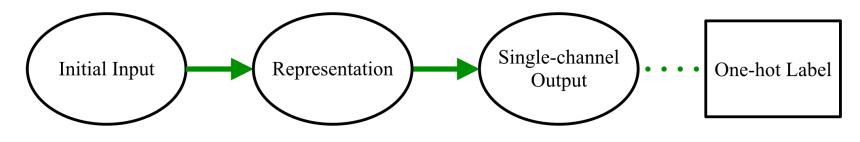




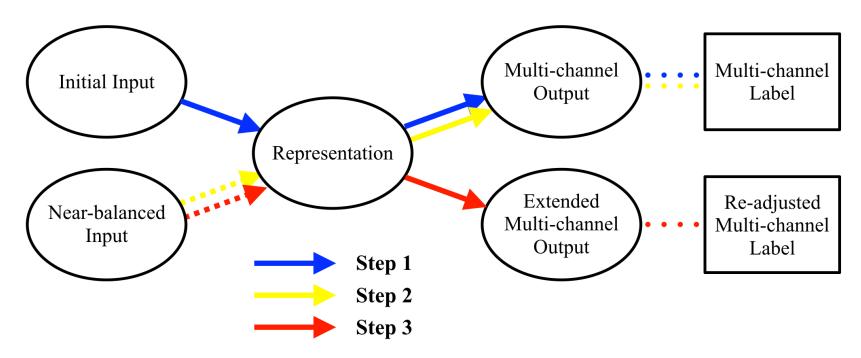
(Pasquet et al. 2019)



(a) Baseline

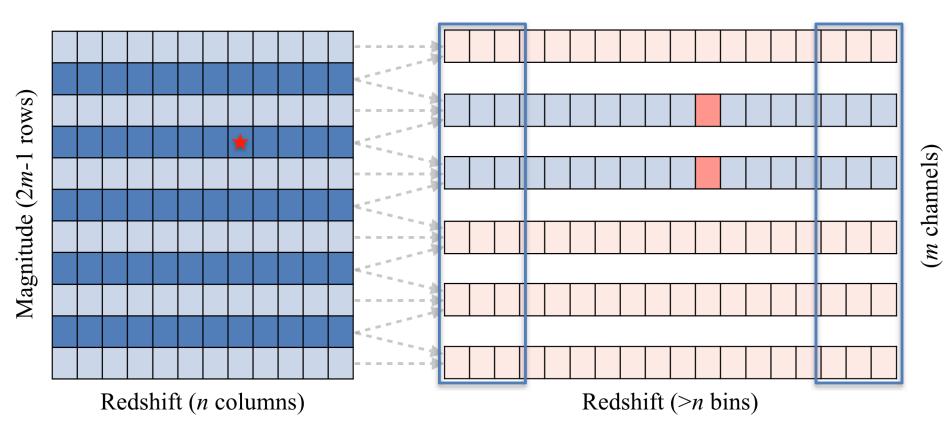


(b) Ours



Correspondence between input space and output channels

Magnitude (*m* bins)

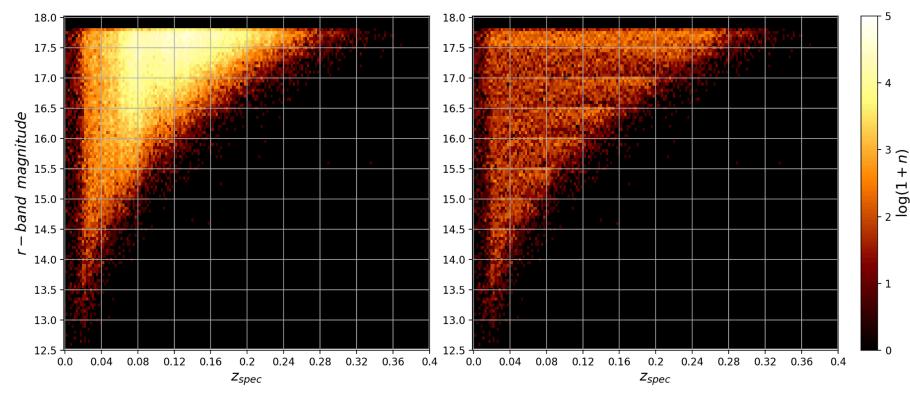


Input Space

Target Output Space

Correction of over-population-induced residuals: construct a near-balanced subset

- Divide the input space into two-dimensional (z, mag) cells.
- Near-balanced subset: randomly select N instances in each cell (N <= Nth).



Original

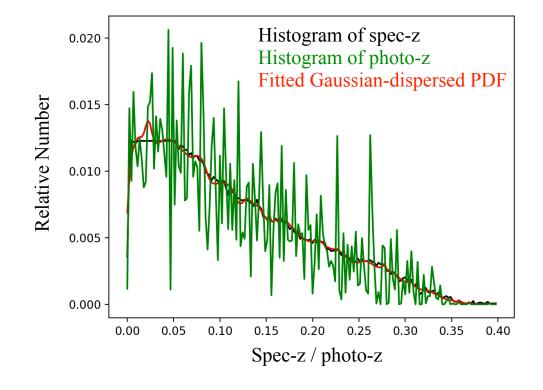
Near-balanced

Correction of mode collapse: introduce dispersion to labels

- Model $\tilde{q}(z'|z, D)$ as Gaussians. Labels are given by $\left| \tilde{q}(z'|z, D) \delta(z|D) dz \right|$
- Fit with the histogram of spec-z and the histogram of pre-estimated photo-z.

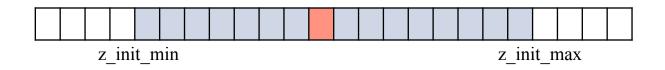
$$\min_{\sigma} \{-p_{spec} \log(p_{photo} * N(0, \sigma))\}$$

Approximation: same labeling dispersion along z for each r-band magnitude.



Correction of under-population-induced residuals

• Extend the range.



• Relocate the (soft) label according to the center-of-mass of the modified distribution.

