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Summary

1. Cluster count cosmology 
2. Likelihoods for cluster count cosmology 

A. Standard likelihoods 
B. MPG likelihood 

3. Framework for testing likelihood accuracies



Cosmology with galaxy clusters: Cluster abundance
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Galaxy clusters: 
● Are the largest gravitationally bound objects in the Universe  
● Mass > 1014 solar masses

NASA, ESA, HST

N predicted
αβ = Ωs ∫

zα+1

zα

d2V(z)
dzdΩ dz∫

log10 Mβ+1

log10 Mβ

dn(M, z)
d log10 M

d log10 M
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Galaxy clusters: 
● Are the largest gravitationally bound objects in the Universe  
● Mass > 1014 solar masses

Cluster abundance : Count the number of clusters in mass-redshift bins 

A. Halo number density 
B. Survey comoving volume 

● Formation history of the Universe (amount of matter, "m) 

● Fluctuation of matter density field (fluctuation amplitude, #8)
NASA, ESA, HST

N predicted
αβ = Ωs ∫

zα+1

zα

d2V(z)
dzdΩ dz∫

log10 Mβ+1

log10 Mβ

dn(M, z)
d log10 M

d log10 M

Impact of  "m and #8  on the halo mass function (z = 0)



Cosmology with galaxy clusters: Cluster abundance

Basic recipe for cluster abundance cosmology 

a. From a galaxy cluster survey with known redshifts, masses 
b. Count the galaxy clusters within several redshift and mass bins

4

differential comoving 
volume (Ωm)

Halo mass function (Ωm, σ8)

N predicted
αβ = Ωs ∫

zα+1

zα

d2V(z)
dzdΩ dz∫

log10 Mβ+1

log10 Mβ

dn(M, z)
d log10 M

d log10 M

̂Nαβ

̂Nαβ

Observed

Cluster count experiment in M-z bins
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Cosmology with galaxy clusters: Variance

Poisson variance/Shot noise Sample variance

• From the dark matter halo distribution in the Universe → derive a 
statistical model for describing what we observe! 

• Know the statistical properties of cluster abundance 

• Cluster abundance as a Poisson variable? 

• Poisson counting experiment : discrete, un-correlated random 
count  

• Poisson variance  

•  : average abundance over many realisations of the same 
cosmology 

• Additional variance , from fluctuations of the matter density 

field

σ2(N ) = N
N

σ2
sample

σ2(N ) = N + σ2
sample(N )  depends on: 

• matter power spectrum  
• mass-redshift range considered 
• Survey geometry 

 increases with the number of halos N per M-z bins

σ2
sample

Pmm(k)

→

Sloan Digital Sky Survey, Park et al. 2005
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Example: dark matter halo catalog from simulation 

● Mass-redshift catalog 
● Binning the catalog in several mass-redshift bins 
● Estimation of the covariance matrix

Covariance matrix for cluster count

Diagonal element of the covariance matrix

● Deviation from sample noise when N/bin is large  
● Off-diagonal terms in correlation matrix

σ2(N ) = N + σ2
sample(N )

/per M-z bin

10 mass bins
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Likelihoods: Poisson vs Gaussian case

Likelihood : links statistical properties of the observables to the data
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Likelihoods: Poisson vs Gaussian case

Likelihood : links statistical properties of the observables to the data

Poisson case (example : SZ clusters, Planck 2015) 
● When the shot noise is dominant, Poisson counting 

● Binned Approach : Count clusters in M-z bins 
● Pros : Unbinned approach  Consider clusters at given M, z 
● Use more information! 
● Cons : Neglect sample variance

→

Poisson : SN

P( ̂N | ⃗θ ) = N( ⃗θ ) ̂N e−N( ⃗θ )

̂N !
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Likelihoods: Poisson vs Gaussian case

Likelihood : links statistical properties of the observables to the data

Poisson case (example : SZ clusters, Planck 2015) 
● When the shot noise is dominant, Poisson counting 

● Binned Approach : Count clusters in M-z bins 
● Pros : Unbinned approach  Consider clusters at given M, z 
● Use more information! 
● Cons : Neglect sample variance

→

Poisson : SN

Gaussian case (example : optical clusters, DES 2020) 
● Sample variance is not negligible  
● Gaussian approximation of the Poisson case (N >> 1) 

● Pros : include sample variance 
● Cons :  only binned approach 

Gaussian : SN + SV

P( ̂N | ⃗θ ) = N( ⃗θ ) ̂N e−N( ⃗θ )

̂N !

P( ⃗ ̂N |θ ) ∝ exp − 1
2 [ ̂N − N( ⃗θ )]TΣ−1[ ̂N − N( ⃗θ )]
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Likelihoods: Poisson vs Gaussian case

Likelihood : links statistical properties of the observables to the data

Poisson case (example : SZ clusters, Planck 2015) 
● When the shot noise is dominant, Poisson counting 

● Binned Approach : Count clusters in M-z bins 
● Pros : Unbinned approach  Consider clusters at given M, z 
● Use more information! 
● Cons : Neglect sample variance

→

Poisson : SN

Gaussian case (example : optical clusters, DES 2020) 
● Sample variance is not negligible  
● Gaussian approximation of the Poisson case (N >> 1) 

● Pros : include sample variance 
● Cons :  only binned approach 

GOAL : derive likelihood that satisfies the unbinned approach and includes the sample variance

Gaussian : SN + SV

P( ̂N | ⃗θ ) = N( ⃗θ ) ̂N e−N( ⃗θ )

̂N !

P( ⃗ ̂N |θ ) ∝ exp − 1
2 [ ̂N − N( ⃗θ )]TΣ−1[ ̂N − N( ⃗θ )]



8

Likelihoods: Multivariate Poisson Gaussian case (MPG)
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Likelihoods: Multivariate Poisson Gaussian case (MPG)

The cluster count is the result of a Gaussian realisation followed by a Poisson realisation:
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Likelihoods: Multivariate Poisson Gaussian case (MPG)

The cluster count is the result of a Gaussian realisation followed by a Poisson realisation:

1. The cluster abundance  is a Poisson realisation of an underlying mean  
2. The local cluster count  is a realisation of a Gaussian variable with mean 

̂N x
x N(Ωm, σ8)
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Likelihoods: Multivariate Poisson Gaussian case (MPG)

The cluster count is the result of a Gaussian realisation followed by a Poisson realisation:

2. Poisson
1. Gaussian

1. The cluster abundance  is a Poisson realisation of an underlying mean  
2. The local cluster count  is a realisation of a Gaussian variable with mean 

̂N x
x N(Ωm, σ8)

PMPG({ ̂N i}1≤i≤n |θ) = ∫ dxn )[ ⃗x | ⃗N (θ), Σsample] ×
n

∏
k=1

+[ ̂N k |xk]
*J. Aitchison & C. H. Ho (1989)
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Likelihoods: Multivariate Poisson Gaussian case (MPG)

The cluster count is the result of a Gaussian realisation followed by a Poisson realisation:

2. Poisson
1. Gaussian

1. The cluster abundance  is a Poisson realisation of an underlying mean  
2. The local cluster count  is a realisation of a Gaussian variable with mean 

̂N x
x N(Ωm, σ8)

PMPG({ ̂N i}1≤i≤n |θ) = ∫ dxn )[ ⃗x | ⃗N (θ), Σsample] ×
n

∏
k=1

+[ ̂N k |xk]

PSPG( ̂N |θ ) =
K(N, σ2

sample)

N̂ ! 2πσ2
sample

e
− μ2

2σ2sample 1
2 c− a

2 −1 cΓ ( a + 1
2 ) 1F1 ( a + 1

2 ; 1
2 ; b2

4c ) − bΓ ( a
2 + 1) 1F1 ( a

2 + 1; 3
2 ; b2

4c )
a = N̂

b = 1 − N
σ2

sample

c = 1
2σ2

sample

with:

*J. Aitchison & C. H. Ho (1989)

Single-variate distribution : “analytical” form
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Likelihoods: Multivariate Poisson Gaussian case (MPG)

The cluster count is the result of a Gaussian realisation followed by a Poisson realisation:

2. Poisson
1. Gaussian

Pros (Both Poisson and Gaussian advantages):  
● Effect of sample variance 
● Can be used in a binned and un-binned framework
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Single-variate distribution : “analytical” form
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Likelihoods: Multivariate Poisson Gaussian case (MPG)

The cluster count is the result of a Gaussian realisation followed by a Poisson realisation:

Poisson case
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Likelihoods: Multivariate Poisson Gaussian case (MPG)

The cluster count is the result of a Gaussian realisation followed by a Poisson realisation:

Poisson case Gaussian case

2. Poisson
1. Gaussian

Sample variance is negligible

Pros (Both Poisson and Gaussian advantages):  
● Effect of sample variance 
● Can be used in a binned and un-binned framework

1. The cluster abundance  is a Poisson realisation of an underlying mean  
2. The local cluster count  is a realisation of a Gaussian variable with mean 

̂N x
x N(Ωm, σ8)

PMPG({ ̂N i}1≤i≤n |θ) = ∫ dxn )[ ⃗x | ⃗N (θ), Σsample] ×
n

∏
k=1

+[ ̂N k |xk]

PSPG( ̂N |θ ) =
K(N, σ2

sample)

N̂ ! 2πσ2
sample

e
− μ2

2σ2sample 1
2 c− a

2 −1 cΓ ( a + 1
2 ) 1F1 ( a + 1

2 ; 1
2 ; b2

4c ) − bΓ ( a
2 + 1) 1F1 ( a

2 + 1; 3
2 ; b2

4c )
a = N̂

b = 1 − N
σ2

sample

c = 1
2σ2

sample

with:

*J. Aitchison & C. H. Ho (1989)

N>>1 and sample variance is 
no more negligible

Single-variate distribution : “analytical” form
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Testing likelihood accuracy

● Problem: We can, using a given likelihood (Poissonian, Gaussian, MPG) estimate our cosmological 
parameters ("m ,#8) and their errors (posterior distribution) but how do we know the errors are 
correct? 

● Answer: We estimate  ("m ,#8) with many different realisation of the universe, and look at the 
distributions 
● This tests the accuracy of the errors 
● Tests the bias of our likelihood estimation 
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Testing likelihood accuracy: 1000 simulations

1000 simulations, P. Monaco et al., 2002 (Fumagalli et al. Euclid collaboration): 
● Euclid-like light-cone (¼ sphere), can be used for Rubin survey 

● V = (3800 Mpc)  ~105 halos/simulation 

● z < 2.5 and Mhalo > 2.43.1014  Msun

3
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Testing likelihood accuracy: 1000 simulations

1000 simulations, P. Monaco et al., 2002 (Fumagalli et al. Euclid collaboration): 
● Euclid-like light-cone (¼ sphere), can be used for Rubin survey 

● V = (3800 Mpc)  ~105 halos/simulation 

● z < 2.5 and Mhalo > 2.43.1014  Msun

3

● Low abundance and high abundance M-z bins 
●  Histogram of observed abundance over the 1000 simulations→

0.2 < z < 0.25
14.16 < log10 M < 14.514.5 < log10 M < 14.501

0.2 < z < 0.25
Low abundance bin ⟨N ⟩ ≈ 2 High abundance bin ⟨N ⟩ ≈ 2500
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Testing likelihood accuracy: 1000 simulations

1000 simulations, P. Monaco et al., 2002 (Fumagalli et al. Euclid collaboration): 
● Euclid-like light-cone (¼ sphere), can be used for Rubin survey 

● V = (3800 Mpc)  ~105 halos/simulation 

● z < 2.5 and Mhalo > 2.43.1014  Msun

3

● Low abundance and high abundance M-z bins 
●  Histogram of observed abundance over the 1000 simulations→

0.2 < z < 0.25
14.16 < log10 M < 14.514.5 < log10 M < 14.501

0.2 < z < 0.25
Low abundance bin ⟨N ⟩ ≈ 2 High abundance bin ⟨N ⟩ ≈ 2500

MPG MPG
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Preliminary results: Binned Gaussian likelihood

● For each simulation, access the posterior 
for ("m ,#8) 

Un-filled contours : Posterior distributions contours for ("m ,#8)  
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Preliminary results: Binned Gaussian likelihood

● For each simulation, access the posterior 
for ("m ,#8) 

Repeat 1000 times over the 1000 simulations: 

● Estimates of ("m ,#8) 

● Look at the distribution 

Un-filled contours : Posterior distributions contours for ("m ,#8)  

Filled contour : Histogram of the 1000 ("m ,#8) individual best fits 

preliminary
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Preliminary results: Binned Gaussian likelihood

● For each simulation, access the posterior 
for ("m ,#8) 

Repeat 1000 times over the 1000 simulations: 

● Estimates of ("m ,#8) 

● Look at the distribution 

Un-filled contours : Posterior distributions contours for ("m ,#8)  

Filled contour : Histogram of the 1000 ("m ,#8) individual best fits 

Perspectives : 
• Test the accuracy of the individual errors 
• Tests the bias of our likelihood estimation 
• Do the same with 

1. Poisson binned/un-binned 
2. MPG binned/un-binned 

• Compare likelihood accuracies

preliminary
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Conclusions

● Cluster count : specific count experiment under matter density fluctuations 

● LSST, Euclid Survey :  detected clusters, sample variance no more negligible 

● Improvement of cluster likelihoods must be considered (unbinned approach including 
sample variance) 

● We propose to use a new Poissonian/Gaussian mixture likelihood combining both 
advantages 

● 1000 simulations → high statistics to determine likelihood accuracies

o(105)



Thank you for your attention!
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NV = ∫V
d3 ⃗x ∑

i
δD( ⃗x − ⃗x i) = ∫ WV( ⃗x )d3 ⃗x ∑

i
δD( ⃗x − ⃗x i)

WV( ⃗k ) = ∫ d3xWV( ⃗x )e−i ⃗k ⋅ ⃗x

Cluster count - covariance matrix 
• Consider a volume V 

• A mean number density n with local estimate  

• The instantaneous count of particles within this volume is given by

̂n( ⃗x ) = ∑
i

δD( ⃗x − ⃗x i)

Window function (1 in V, 0 elsewhere)

Power spectrum

Cov(Nα1
, Nα2

) = Nα1
δα1,α2

K + n̄2 ∫ d3k
(2π)3 Phh( ⃗k )W*α1

( ⃗k )Wα2
( ⃗k ) = ΣPoissonian + Σsample
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N predicted
αβ = Ωs ∫

z2

z1

dz∫
log10 M2

log10 M1

d log10 M
dn(M, z)
d log10 M

d2V(z)
dzdΩ

N predicted
αβ = Ωs ∫

z2

z1

dz∫
λ2

λ1

dλ∫
log10 Mmax

log10 Mmin

d log10 M
dn(M, z)
d log10 M

d2V(z)
dzdΩ PM−λ(λ |M, z)

N predicted
αβ = Ωs ∫

z2

z1

dz∫
λobs,2

λobs,1

dλobs ∫
λ2

λ1

dλ∫
log10 Mmax

log10 Mmin

d log10 M
dn(M, z)
d log10 M

d2V(z)
dzdΩ PM−λ(λ |M, z)P(λobs |λ)

N predicted
αβ = Ωs ∫

z2

z1

dz∫
λ2

λ1

dλ∫
log10 Mmax

log10 Mmin

d log10 M
dn(M, z)
d log10 M

d2V(z)
dzdΩ S(M, z)PM−λ(λ |M, z)

2 integrals

3 integrals

3 integrals + 
selection 
function

3 integrals + selection function + uncertainties on cluster redshifts and proxies


