Galaxy cluster masses from magnification and the effects of intracluster dust

CALUM MURRAY, CELINE COMBET & CONSTANTIN PAYERNE. -LABORATOIRE DE PHYSIQUE SUBATOMIQUE ET COSMOLOGIE, GRENOBLE

Galaxy clusters

- Largest bound objects in the universe $> 10^{14} \, \mathrm{M_{\odot}}$
- Composition
 - 85% dark matter
 - 12% hot gas
 - 3 % stellar mass
- Provided early evidence for dark matter through observations of galaxy velocities (Zwicky 1933)
- They provide strong constraints on the matter content, geometry, the nature of gravity and the formation of structure in the universe and gravitational lensing gives information on all of this!

Intracluster dust

- Dust may be thrown into the intracluster medium by
 - Supernova explosions
 - Ram pressure stripping
 - Tidal interactions
 - Super massive blackholes!
- However once in the medium they will be heated by the intracluster X-ray gas
- Dust can cool the intracluster medium but also inform us of the phenomena that may send dust into the medium

Cluster Lensing

- Shears galaxy images (primary probe)
- Increases galaxy magnitudes
- Galaxy surveys are magnitude limited, magnification introduces faint galaxies into the sample which we would not normally see
- Deflects galaxy images away from the cluster centre, which reduces the number of galaxies in radial annuli from the centre
- Magnification has different systematics than shear!

Dust and magnification

- Dust
 - Reduces background galaxy magnitude
- Lensing
 - Galaxies appear further from the cluster centre
 - Increase galaxy magnitudes
- However the dust effects are wavelength dependent!
- Galaxy magnitude is m, κ is the lensing convergence, τ_{λ} is the optical dust depth at a given wavelength, $\overrightarrow{\theta}$ is the position of a background galaxy and $\overrightarrow{\alpha}$ is the lensing angle

$$m_{obs} \approx m_{int} - \frac{5}{2ln10} \left(2\kappa - \tau_{\lambda} \right)$$
$$\overrightarrow{\theta}_{obs} = \overrightarrow{\theta}_{int} + \overrightarrow{\alpha}_{lens}$$

Dust and magnification

- Galaxy magnitude is m, κ is the lensing convergence, τ_{λ} is the optical dust depth at a given wavelength, $\overrightarrow{\theta}$ is the position of a background galaxy and $\overrightarrow{\alpha}$ is the lensing angle

$$m_{obs} \approx m_{int} - \frac{5}{2ln10} \left(2\kappa - \tau_{\lambda} \right)$$
$$\overrightarrow{\theta}_{obs} = \overrightarrow{\theta}_{int} + \overrightarrow{\alpha}_{lens}$$

 $\delta m_{lens} \approx 0.1$

Towards the centre of a cluster we expect

 $\delta m_{dust} \approx 0.01$

Objectives

- -Joint measure of cluster dust content and cluster masses with magnification
- clustering, magnitude and redshift information

- Introduce a new (and hopefully improved) likelihood which incorporates galaxy

Redmapper clusters and Hyper Suprime Cam

- 458 SDSS Redmapper clusters are found in the HSC field
- Red dots are SDSS Redmapper clusters
- White dots are Redmapper clusters within the HSC field
- HSC has a high galaxy density $n_{gal} \approx 20 [arcmin^2]$
- 5 magnitude bands (grizy) important for dust searches
- HSC is a good testing ground for Rubin LSST (weak lensing)

CALUM MURRAY

wavelength

Stacked magnitude profiles

- Using a subsample of 90 clusters in the redshift interval $0.2 < z_{cluster} < 0.3$
- We measure the average magnitude for a stack of clusters in annuli from the cluster centre
- Clear chromatic signal
- **Attention!** Lensing introduces colour changes, faint galaxies which are introduced to the sample have different colours to bright galaxies
- These profiles have been used to measure dust, not strictly true (Menard et al. 2009)

$$\left< \delta m \right> = \left< m(\theta) \right> - \left< m_{field} \right>$$
$$m_{obs} \approx m_{int} - \frac{5}{2ln10} \left(2\kappa - \tau_{\lambda} \right)$$

The usual method - single magnitude cut

- Galaxies are **magnified** which **introduces** galaxies into the sample
- **Solid angles** on the sky are magnified which **reduces** galaxies per solid angle

$$n_{obs}(\vec{\theta}) \approx n_{int}(\vec{\theta}) \left[1 + 2\kappa(\alpha - 1)\right] \quad \alpha = 0$$

- Choose **one magnitude cut** which gives a α which maximises the signal
 - This is a game between the best value of α and keeping as many galaxies as possible
 - Does not make much use of galaxy magnitude or redshift information
- Chiu, Umetsu et al. 2020, Schmidt et al. 2010, Broadhurst, Taylor and Peacock 1994

Chiu, Umetsu et al. 2020

The usual method - single magnitude cut

- Galaxies are **magnified** which **introduces** galaxies into the sample
- Solid angles on the sky are magnified which reduces galaxies per solid angle

$$n_{obs}(\vec{\theta}) \approx n_{int}(\vec{\theta}) \left[1 + 2\kappa(\alpha - 1)\right] \quad \alpha = 0$$

- Clearly these two effects compete/cancel with one another
- Pros
 - Simple

- Cons
 - Doesn't use all the available information
 - Relies heavily on the weak lensing approximation

CALUM MURRAY

Chiu, Umetsu et al. 2020

New approach - full magnitude distribution

- Resolution: use the full galaxy magnitude distribution
- Two effects
 - Change in magnitude δm -> shifts distribution
 - Change in **solid angle on the sky** A -> changes normalisation
- Pros
 - More info
- Cons

$$\delta m \approx -\frac{5}{2ln10} \left(2\kappa - \tau_{\lambda} \right) \quad A_{obs} = \frac{A_o}{(1 - \kappa)^2 - \kappa_o}$$
$$n_{obs} = n_o (m + \delta m, \vec{\theta}_{int} + \vec{\alpha}_{lens})$$
$$= n_o (m + \delta m) \left[(1 - \kappa)^2 - |\gamma| \right]$$

CALUM MURRAY

Nock results

- n_o is calculated from the global galaxy distribution

- We generate random positions within the HSC footprint and inject a fake cluster signal
 - Lensed galaxy positions
 - Lensed/dusted galaxy magnitudes
 - Estimate the mass with our model
- It works!

CALUM MURRAY

M [M₀]

 $n_{obs} = n_o(m + \delta m, \vec{\theta}_{int} + \vec{\alpha}_{lens}) = n_o(m + \delta m) \left[(1 - \kappa)^2 - |\gamma|^2 \right]$

Future work

- Estimate stacked cluster masses on mocks
- Incorporate dust models into the mock and our likelihood
- Estimate dust content and cluster masses with redMaPPer clusters and HSC galaxies

