Noise budget

Wavelength

Carl State and State and State and State and State

comments a supplication of the place

Observatory design & Noise budget working package ET wavelength workshop 2021.09.03

01/09/2021

Wavelength impact

Direct:

Quantum noiseShot noise $\propto \lambda$ Radiation pressure noise $\propto 1/\lambda$ Optical losses

Indirect:

Substrate material - Substrate Brownian noise Substrate Thermoelastic noise

Coating material

Residual gas noise: Cavity Geometry

Assumption:

- Arm power 18kW for three cases.
- Test mass 200kg for three cases.
- 15dB injection Squeezing for three cases.
- 10km long filter cavity for three cases.
- Optical losses:

	Arm m L	Filter Cav RT L	PD E
1064nm	37.5ppm	150ppm	0.97
1550nm	18+10ppm	75ppm	0.97
2000nm	10+10ppm	47ppm	0.92

Light scattering $\mathcal{L} = \left(\frac{4\pi\sigma}{\lambda}\right)^2$

10 ppm loss is added as a margin for losses from absorption, clipping, etc.

The overlap of high frequency shot noise comes from the compensation between loss coefficient and scaling $1/\lambda$.

Long wavelength gives lower loss.

The SRC is detuned to give identical optical resonant frequency. 92% PD efficiency is assumed for 2000nm.

The sum of seismic, Newtonian and suspension thermal noise@10K is set to be the low frequency barrier.

Substrate Thermoelastic noise

 $S_{TE}^{s} = \frac{4k_{b}T^{2}\alpha_{s}^{2}(1+\sigma_{s})^{2}\kappa_{s}}{\pi^{5/2}(C_{s}\rho_{s})^{2}w^{3}f^{2}}$

	Silicon (10K)	Silicon (20K)	Sapphire (10K)	Sapphire (20K)	Silica (300K)
$K_s(W/m/K)$	1000	3000	2900	4300	1.38
$\alpha_s(1/\mathrm{K})$	4.8e-10	2.9e-9	5.3e-10	4.6e-9	3.8e-7
$C_s(J/kg/K)$	0.276	3.41	0.085	0.72	739

Residual gas noise

Assumption:

- 5e-7Pa hydrogen
- the same beam size on test masses (different cavity g factor)

To be revised and solved:

- 1. Revising substrate material parameters.
- 2. Coating solutions.
- 3. Revising optical losses
- 4. The allowable arm power considering different optical absorption from coating and substrate.
- 5. Optimizing SRC detuning for different wavelength.