

KAGRA's experience with sapphire mirrors

M. Leonardi on behalf of KAGRA collaboration

Summary

Sapphire substrate:

• Absorption:

well known problem from design phases

• Birefringence:

partially unexpected problem

Optical absorption in sapphire mirrors

To achieve a stable temperature for the test masses (ITM case):

$$P_{rad} + P_{BS}\alpha_{bulk}L + P_{arm}\alpha_{coat} < P_{cryo}$$

Left side can be minimized by optimizing PRG and arm Finesse

- This choice has impact on ITF quantum noise
- (design): $P_{BS}\alpha_{bulk}L \approx P_{arm}\alpha_{coat}$

Right side depends mainly on fiber diameters

• Suspension thermal noise is determined by fibers geometry

Optical absorption characterization

Photothermal Common-path Interferometer:

Growth orientation impact on opt. absorption spatial distribution [31] [32]

C-axis growth:

A-axis growth:

	Company B		S1		S2	S3	
	#0		167.6 (35.5)		126.8 (41.7)	26.6 (17.0)	
	#1		96.1 (31.2)		93.1 (28.7)	99.3 (38.0)	
	#2		27.1 (11.0)		31.5 (10.5)	24.8 (10.5)	
	#3		73.3 (23.2)		137.6 (34.7)	143.1 (39.9)	
-[#4		130.9 (39.1)		99.4 (22.7)	139.5 (35.7)	
	#5		85.3 (34.7)		56.5 (14.9)	119.6 (39.9)	
	#6		184.9 (54.5)		140.9 (36.1)	201.6 (54.8)	
	#7		65.1 (14.9)		62.2 (16.6)	91.2 (28.7)	
	#8		111.4 (34.1)		66.3 (18.6)	143.2 (30.3)	
	#10		112.5 (51.7)		38.7 (17.6)	32.9 (13.7)	
	#11		21.2 (12.3)		22.8 (18.2)	33.4 (23.4)	
	#12		77.1 (24.2)		83.6 (30.2)	89.7 (31.1)	
Company A		S1		S2		S3	
#1(I	F62-22)	41	1 (23.1)	6	64.3 (23.3)	59.9 (19.8)	
#2 (F47-21)		72.1 (31.1)		8	37.3 (38.2)	93.4 (36.5)	
#3 (AC-179)		60.6 (76.0)		3	37.7 (17.3)	47.7 (34.1)	
#4 (F39-56)		94.0 (139.6)		305.3 <mark>(</mark> 250.0)		160.2 (171.4)	
#5 (MMK-1)		106.98 (45.68)		69.02 (22.91)		76.0 (31.0)	
#6 (MMK-2)		216.47 (108.01)		82.82 (30.90)		99.4 (49.5)	
#7 (C14-11c)		114.2 (95.5)		7	79.3 (49.9)	72.4 (42.7)	
#8 (OC-1)		86.6 (45.7)		6	9.5 (35.5)	58.0 (25.2)	

Growth orientation impact on opt. absorption spatial distribution

ET-LF wavelength workshop - 03/09/2021

Absorption [ppm/cm]

Dislocation and optical absorption

Structural defects as preferential sites for the inclusion of absorbing centers

www.nature.com/scientificreports

Check for updates

scientific reports

OPEN 3D characterization of low optical absorption structures in large crystalline sapphire substrates for gravitational wave detectors

Manuel Marchiò^{1,2⊠}, Matteo Leonardi², Marco Bazzan³ & Raffaele Flaminio^{2,4}

New and better sapphire substrates

Several samples are being / have been analyzed...

Companies:

 Many additional samples from old and new companies are being constantly characterized

iLM:

 KAGRA is collaborating and supporting the realization and study of new sapphire substrates

Sapphire: a birefringent material

Substrate original requirements:

- Crystal orientation: c-plane +/- 0.2deg
- dn< 5e-7 (RMS) @633nm
 - No requirements on $dn_b \propto n_o n_e$

Global c-axis orientation is not an issue, but local anisotropies are!

ITMs bulk birefringence: p-pol detected

ITMs TWE maps not within specs

Measurement from <u>T1809173</u> (<u>T1808715</u>, <u>T1910386</u>, <u>Phys. Rev. Appl.</u> <u>14, 014021</u>)

	specification	vendor report	measured
ΙΤΜΧ	< Craine	3.47	25.9nm
ITMY		4.07	30.1nm
•	•	-	

Cause:

 polisher's Fizeau interferometer uses circularly polarized laser while the KAGRA detector uses linearly polarized light

Characterization setup at NAOJ

Birefringence measurements

Birefringence measured as cumulative effect: $\xi = \tan^{-1} \sqrt{\frac{P_s}{P_p}}$

From birefringence to Δn

Structural defects can be the cause of both absorption and birefringence*

*Paper in preparation.

Summary and future

Sapphire main problems:

- Optical absorption
- Birefringence

Growth process has large impact

Sapphire (optical) advantages:

- Works with 1064nm technology
- Do not exhibit stress induced behaviors

Future steps (for KAGRA):

- Interface with crystal makers (companies and iLM) to tune the growth process parameters
- Post-growth heat treatments

Coating thermal noise measurements

Measurement of the mechanical loss of reflective coatings for KAGRA

<u>Yota Nakayama</u>, Y.Mori, K.Yamamoto, T.Ushiba^A University of Toyama, ICRR^A

KAGRA F2F meeting @online (August 27-29 ,2021) Email :m2041105@ems.u-toyama.ac.jp

KAGRA coating thermal noise: $2.9 \times 10^{-24} [1/\sqrt{\text{Hz}}]$ at 100Hz (Ti undoped, 3rd mode at 20K)

Discussion with Virgo Coating R&D ongoing to characterize new coating type at cryogenic temperature @Toyama facility