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Introduction

• Modified gravity theories: predictions different from GR
• Important test: quasinormal modes of black holes
• Up to now, theoretical computations are rare
• Present a systematic algorithm to extract physical information and perform
numerical analysis



Quasinormal modes of a
Schwarzschild black hole



Perturbation setup Schrödinger equations

Separating the degrees of freedom

1. Start with the Einstein-Hilbert action

𝑆[𝑔𝜇𝜈] = ∫ d4𝑥 √−𝑔 𝑅

2. Static spherically symmetric background

̄𝑔𝜇𝜈 = diag(−𝐴(𝑟), 1/𝐴(𝑟), 𝑟2, 𝑟2 sin2 𝜃) , 𝐴(𝑟) = 1 − 𝑟𝑠/𝑟

3. Perturb the metric: 𝑔𝜇𝜈 = ̄𝑔𝜇𝜈 + ℎ𝜇𝜈 and linearise Einstein’s equations
⇒ obtain 10 equations

4. Decompose the components of ℎ𝜇𝜈 over spherical harmonics
5. Separate by parity: polar (even) and axial (odd) modes
6. Gauge fixing via ℎ𝜇𝜈 ⟶ ℎ𝜇𝜈 + ∇𝜇𝜉𝜈 + ∇𝜈𝜉𝜇:

• Polar modes: 7 equations for 𝐾, 𝐻0, 𝐻1, 𝐻2
• Axial modes: 3 equations for ℎ0, ℎ1

7. Fourier transform: 𝑓 (𝑡, 𝑟) = exp(−𝑖𝜔𝑡)𝑓 (𝑟)



Perturbation setup Schrödinger equations

Reducing the number of equations

Two systems with more equations than variables → overconstrained?

Axial modes
• 2 first-order equations
• 1 second-order equation

Polar modes
• 4 first-order equations
• 2 second-order equations
• 1 algebraic equation

Interestingly, each system is equivalent to a 2-dimensional system1:

d𝑋axial
d𝑟 = 𝑀axial(𝑟)𝑋axial and

d𝑋polar
d𝑟 = 𝑀polar(𝑟)𝑋polar .

1 Regge, T. and Wheeler, J. A. 1957; Zerilli, F. J. 1970.



Perturbation setup Schrödinger equations

Final system of equations

Axial modes

𝑋axial = 𝑡 (ℎ0 ℎ1/𝜔)

𝑀axial = ⎛⎜⎜
⎝

2
𝑟 2𝑖𝜆 𝑟−𝑟𝑠

𝑟3 − 𝑖𝜔2

− 𝑟2

(𝑟−𝑟𝑠)2 − 𝑟𝑠
𝑟(𝑟−𝑟𝑠)

⎞⎟⎟
⎠

Polar modes

𝑋polar = 𝑡 (𝐾 𝐻1/𝜔)

𝑀polar = 1
3𝑟𝑠 + 2𝜆𝑟

⎛⎜⎜⎜
⎝

𝑎11(𝑟)+𝑏11(𝑟)𝜔2

𝑟(𝑟−𝑟𝑠)
𝑎12(𝑟)+𝑏12(𝑟)𝜔2

𝑟2
𝑎21(𝑟)+𝑏21(𝑟)𝜔2

2(𝑟−𝑟𝑠)2
𝑎22(𝑟)+𝑏22(𝑟)𝜔2

𝑟(𝑟−𝑟𝑠)

⎞⎟⎟⎟
⎠

(set 2(𝜆 + 1) = ℓ(ℓ + 1))

⇒ goal to achieve: simplify these complicated differential systems



Perturbation setup Schrödinger equations

Effect of a change of variables

Changing the functions in 𝑋 is not a change of basis for 𝑀!

Change of variables
d𝑋
d𝑟 = 𝑀(𝑟)𝑋 , 𝑋 = 𝑃(𝑟)�̃�

d�̃�
d𝑟 = �̃�(𝑟)�̃� , �̃� = 𝑃−1𝑀𝑃 − 𝑃−1 d𝑃

d𝑟

Main idea: find a change of variables that will put the equation into a better form



Perturbation setup Schrödinger equations

Usual change of variables: propagation equation

Canonical form for �̃�:

�̃� = ⎛⎜
⎝

0 1
𝑉(𝑟) − 𝜔2

𝑐2 0
⎞⎟
⎠

Physical interpretation

⎧{
⎨{⎩

�̃�′
0 = �̃�1 ,

�̃�′
1 = (𝑉(𝑟) − 𝜔2/𝑐2)�̃�0

⇒ d2�̃�0
d𝑟2∗

+ (𝜔2

𝑐2 − 𝑉(𝑟)) �̃�0 = 0 , d𝑟
d𝑟∗

= 𝐴(𝑟)

Schrödinger equation with potential 𝑉

𝑟∗: “tortoise coordinate”, 𝑟 = 𝑟𝑠 ⟶ 𝑟∗ = −∞ and 𝑟 = +∞ ⟶ 𝑟∗ = +∞



Perturbation setup Schrödinger equations

Interpretation of the equations

Axial case:

𝑃axial = ⎛⎜
⎝

1 − 𝑟𝑠/𝑟 𝑟
𝑖𝑟2/(𝑟 − 𝑟𝑠) 0

⎞⎟
⎠

, 𝑐 = 1

At the horizon and infinity:

𝑋0(𝑡, 𝑟) ∝ 𝑒−𝑖𝜔(𝑡±𝑟∗)

⇒ Propagation of waves
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Physical interpretation
• Free propagation at 𝑐 = 1 near the horizon and infinity
• Scattering by the potential 𝑉
• At infinity: recover gravitational waves in Minkowski



Perturbation setup Schrödinger equations

Computation of the modes

Quasinormal modes

• Waves ingoing at the horizon:
𝑒−𝑖𝜔(𝑡+𝑟∗)

• Waves outgoing at infinity: 𝑒−𝑖𝜔(𝑡−𝑟∗)
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• 2 boundary conditions + 2nd order system ⟶ conditions on 𝜔
• “Eigenvalue problem”: find values of parameter such that solutions exist
• Very different from plucked string: wave propagation at each boundary!



Quasinormal modes in modified
gravity



Motivations for modified gravity Comparison with the GR case QNMs from the first order system

Motivation for beyond-GR theories

Heuristic approach
• Design new tests of GR beyond a
null hypothesis check

• EFT of some high energy theory

Issues of GR
• Singularities (Big Bang, black holes)
• Cosmic expansion

⇒ Important to look for extensions of GR
⇒ Quasinormal modes are a good test of both GR and the background metric



Motivations for modified gravity Comparison with the GR case QNMs from the first order system

Scalar-tensor gravity

For simplicity, we consider quadratic Horndeski theory:

𝑆[𝑔𝜇𝜈, 𝜙] = ∫ d4𝑥 (𝐹(𝑋)𝑅 + 𝑃(𝑋) + 𝑄(𝑋)□𝑋 + 2𝐹′(𝑋) (𝜙𝜇𝜈𝜙𝜇𝜈 − (□𝜙)2)) ,

𝜙𝜇 = ∇𝜇𝜙 , 𝑋 = 𝜙𝜇𝜙𝜇

• New scalar degree of freedom
• Non-minimal coupling between scalar and metric
• More involved dynamics even in vaccuum

⇒ we are presently generalizing the results to cubic Horndeski theories



Motivations for modified gravity Comparison with the GR case QNMs from the first order system

New black holes in modified gravity: BCL solution2

BCL solution:

𝐹(𝑋) = 𝑓0 + 𝑓1√𝑋 𝑃(𝑋) = −𝑝1𝑋 , 𝑄(𝑋) = 0

Metric sector: RN with imaginary charge

d𝑠2 = −𝐴(𝑟) d𝑡2 + 1
𝐴(𝑟) d𝑟2 + 𝑟2 dΩ2

𝐴(𝑟) = 1 − 𝑟𝑚
𝑟 − 𝜉 𝑟2

𝑚
𝑟2 , 𝜉 =

𝑓 2
1

2𝑓0𝑝1𝑟2𝑚

Scalar sector

𝜙 = 𝜓(𝑟) , 𝜓′(𝑟) = ± 𝑓1
𝑝1𝑟2√𝐴(𝑟)

𝑋(𝑟) =
𝑓 2
1

𝑝2
1𝑟4

2 Babichev, E., Charmousis, C., and Lehébel, A. arXiv: 1702.01938.



Motivations for modified gravity Comparison with the GR case QNMs from the first order system

Summary: computation of QNMs in GR

1 2 3 4 5 6

Linearized
Einstein’s
eqs

→
Gauge
choice → Background →

First-order
system →

Schrödinger
equations →

Numerical
computa-
tion

Major difficulties:

1 Many different theories
3 Many different backgrounds
5 Highly non-trivial change of variables!



Motivations for modified gravity Comparison with the GR case QNMs from the first order system

New challenges in modified gravity

New theories
Scalar-tensor: new scalar degree of
freedom that couples to the polar mode

New backgrounds
BCL solution: more involved metric
function

Schrödinger equation
In general, very hard to solve:

⎛⎜
⎝

0 1
𝑉(𝑟) − 𝜔2

𝑐2 0
⎞⎟
⎠

= 𝑃−1𝑀𝑃 − 𝑃−1 d𝑃
d𝑟

⇒ need for a systematic approach that does not rely on specific simplifications



Motivations for modified gravity Comparison with the GR case QNMs from the first order system

Example: polar BCL perturbations

𝐴(𝑟) = 1 − 𝑟𝑚
𝑟 − 𝜉 𝑟2

𝑚
𝑟2 , 𝜉 =

𝑓 2
1

2𝑓0𝑝1𝑟2𝑚
, 𝜙′(𝑟) = ± 𝑓1

𝑝1𝑟2√𝐴(𝑟)

𝑀(𝑟) =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−1
𝑟 + 𝑈

2𝑟3𝐴
𝑈
𝑟4

𝑖(1+𝜆)
𝜔𝑟2

𝑉
𝑟3

𝜔2𝑟2

𝐴2 − 𝜆
𝐴 − 𝑟𝑚

2𝑟𝐴 + 𝑟2
𝑚𝑆

4𝑟4𝐴2 −2
𝑟 − 𝑈𝑉

2𝑟5𝐴 − 𝑖𝜔𝑟
𝐴 + 𝑖(1+𝜆)𝑈

2𝑟3𝜔𝐴 − 𝜆
𝐴 − 3𝑈

2𝑟3𝐴 − 𝜉2𝑟4
𝑚

2𝑟4𝐴
− 𝑖𝜔𝑉

𝑟2𝐴
2𝑖𝜔

𝑟 − 𝑖𝜔𝑈
𝑟3𝐴 − 𝑈

𝑟3𝐴 − 𝑖𝜔𝑉
𝑟2𝐴

−1
𝑟 + 𝑈

2𝑟3𝐴
2
𝑟2 − 𝑈2

2𝑟6𝐴 − 𝑖𝜔
𝐴 + 𝑖(1+𝜆)

𝜔𝑟2
1
𝑟 − 𝑈

2𝑟3𝐴 − 𝑈𝑉
2𝑟5𝐴

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝑈(𝑟) = 𝑟𝑚(𝑟 + 𝜉𝑟𝑚) , 𝑉(𝑟) = 𝑟2 + 𝜉𝑟2
𝑚 , 𝑆(𝑟) = 𝑟2 + 2𝜉𝑟(2𝑟𝑚 − 𝑟) + 2𝜉2𝑟2

𝑚 .



Motivations for modified gravity Comparison with the GR case QNMs from the first order system

First-order system and boundary conditions

Main idea
Skip step 5 : get boundary conditions and perform numerical computations

from the first-order system

Steps to perform
• Find asymptotic behaviour at the horizon and infinity
• Identify ingoing and outgoing modes
• Use a numerical method that does not require Schrödinger equations

Naively:

d𝑋
d𝑟 = 𝑀𝑋 , 𝑀(𝑟) = 𝑀𝑝𝑟𝑝 + 𝒪(𝑟𝑝−1) ⇒ 𝑋 ∼ exp⎛⎜

⎝
𝑀𝑝

𝑟𝑝+1

𝑝 + 1
⎞⎟
⎠

𝑋𝑐



Motivations for modified gravity Comparison with the GR case QNMs from the first order system

Failure of naive approach

Axial Schwarzschild

𝑀(𝑟) = ⎛⎜
⎝

0 −𝑖𝜔2

−𝑖 0
⎞⎟
⎠

+ 𝒪 (1
𝑟 )

𝑋 ∼ ⎛⎜
⎝

𝑒𝑖𝜔𝑟 0
0 𝑒−𝑖𝜔𝑟

⎞⎟
⎠

𝑋𝑐

Polar Schwarzschild

𝑀(𝑟) = ⎛⎜
⎝

0 0
𝑖𝜔2

𝜆 0
⎞⎟
⎠

𝑟2 + 𝒪(𝑟)

𝑋 ∼ ⎛⎜
⎝

1 0
𝑖𝜔2

𝜆
𝑟3

3 1
⎞⎟
⎠

𝑋𝑐

Problem
• We do not recover the 𝑒±𝑖𝜔𝑟∗ behaviour all the time!
• This is because of a nilpotent leading order in the polar case
• A more advanced mathematical treatment is needed



Motivations for modified gravity Comparison with the GR case QNMs from the first order system

Mathematical results

Solution: behaviour studied in3, mathematical algorithm from4

Mathematical algorithm
Main idea: diagonalize 𝑀 order by order using

�̃� = 𝑃−1𝑀𝑃 − 𝑃−1 d𝑃
d𝑟

⇒ important result: diagonalization is always possible!

General result:

𝑀 = 𝑀𝑝𝑟𝑝 + 𝑀𝑝−1𝑟𝑝−1 + …
�̃� = 𝐷𝑞𝑟𝑞 + 𝐷𝑞−1𝑟𝑞−1 + …
𝑋 ∼ 𝑒𝐷(𝑟)𝑟𝐷−1𝐹(𝑟)𝑋𝑐

3 Wasow, W. 1965.
4 Balser, W. 1999.



Motivations for modified gravity Comparison with the GR case QNMs from the first order system

Example for the BCL solution: polar perturbations at infinity

�̃� ∼
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−𝑖𝜔(1 + 𝑟𝑚
𝑟 )

𝑖𝜔(1 + 𝑟𝑚
𝑟 )

−√2𝜔(1 + 𝑟𝑚
2𝑟 )

√2𝜔(1 + 𝑟𝑚
2𝑟 )

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

𝔤∞
± (𝑟) = 𝑎±𝑒±𝑖𝜔 𝑟𝑟±𝑖𝜔 𝑟𝑚 ,

𝔰∞
± (𝑟) = 𝑏±𝑒±√2𝜔 𝑟𝑟±𝜔 𝑟𝑚/√2 ,

Gravitational Scalar

• The modes are decoupled locally
• The gravitational mode propagates at 𝑐 = 1 at infinity
• One can identify one ingoing and one outgoing gravitational mode
• The scalar mode does not propagate at infinity



Motivations for modified gravity Comparison with the GR case QNMs from the first order system

Example for the BCL solution: polar perturbations at the horizon

�̃� ∼
⎛⎜⎜⎜⎜⎜⎜⎜⎜
⎝

−𝑖𝜔/𝑐0
𝑖𝜔/𝑐0

1/2 1
1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟
⎠

1
𝑟 − 𝑟+

𝔤𝑟+
± (𝑟) = 𝑐±(𝑟 − 𝑟+)−𝑖𝜔/𝑐0 ,

𝔰𝑟+
1 (𝑟) = (𝑑1 ln(𝑟 − 𝑟+) + 𝑑2)√𝑟 − 𝑟+ ,

𝔰𝑟+
2 (𝑟) = 𝑑1√𝑟 − 𝑟+ ,

• The modes are again decoupled locally
• The gravitational mode propagates at 𝑐 = 𝑐0 at the horizon
• One can identify one ingoing and one outgoing gravitational mode
• The scalar mode does not propagate at the horizon



Motivations for modified gravity Comparison with the GR case QNMs from the first order system

“Recipe” for the computation of quasinormal modes

1 2 3 4 5 6

Linearized
Einstein’s
eqs

→
Gauge
choice → Background →

First-order
system → Asymptotical

behaviour
→

Numerical
computa-
tion

• Generic algorithm that should work for any modified gravity theory
• Go around the technical difficulties of steps 1 and 3
• Caveat: we do not get the full decoupled equations for the modes ⇒
impossible to get a potential

• Asymptotical behaviour is enough to obtain boundary conditions for
numerical resolution



Conclusion

• Computing quasinormal modes can be very difficult in modified theories of
gravity

• We propose a new technique: use the first-order system instead of looking
for Schrödinger-like equations

• A mathematical algorithm enables us to decouple the modes asymptotically,
which allows us to find their physical behaviour and obtain boundary
conditions

• This approach is systematical and theory-agnostic: it can be applied to any
theory of gravity and any background



Thank you for your attention!
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