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Kerr Black Hole

Penrose diagram of Kerr
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BHs are not in isolation but are ‘“perturbed’ by fields (scalar, fermion,
electromagnetic, gravitational...) due to neighbouring matter (eg,
accretion disk, another compact object, etc)
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Q: Is Kerr spacetime stable
under field perturbations?



Wave Equation

We consider linear field perturbations of a fixed BH -> the fields
propagate on a BH background g,,,

Teukolsky’73: scalar combinations of components & derivatives of the
various fields (spin |s|=0 scalar, =1/2 neutrino, =1 emag for Faraday
tensor, =2 grav for Weyl tensor) obey a wave-like eq.:

O1p(z) = T(z)

|

field scalar source of field



Green Function

A crucial object is the retarded Green function

A

O Gret(x,x') = 04(x,2")  with causal b.c.



Green Function

A crucial object is the retarded Green function

O Gret(2,2") = 04(x,2")  with causal b.c.

GF determines evolution in time of any initial field configuration

P(x) = / [Gret (z, ) (Z) + 0 (T) 0y Grer(z, ') | A>T
t=0



Green Function

A crucial object is the retarded Green function

O Gret(2,2") = 04(x,2")  with causal b.c.

GF determines evolution in time of any initial field configuration

P(x) = / [Gret (z, 2 () 4+ () 0,Grer(x, ') | A>T
t=0

GF can be calculated by decomposing into spheroidal harmonics and
Fourier modes:

Gret = Z/ dw " Sy (0)Seme (0) G ome (r, 1)
f,m ¥ T

|

the Fourier modes satisfy a radial ODE



Mode solutions

Mode slns. correspond to frequencies wy,,,, € C which are poles
of the GF Fourier modes:
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ougoing at infinity:




Mode solutions

Mode slns. correspond to frequencies wy,,,, € C which are poles
of the GF Fourier modes:

Gémw |w:w£mn — O

They’re waves that are purely ingoing into the horizon and purely
ougoing at infinity:

Calculate them by solving a continued fraction eq. on w = wy,,,,
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Mode Stability of Subextremal Kerr

Time dependence: ¢~ *W¢mnt

1 t — +0o0

{If Im(wemn) < 0: exponentially damped (quasinormal modes, QNMs)

If Im(wemn) > 0: exponentially growing (unstable modes)
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Mode Stability of Subextremal Kerr

Time dependence: ¢~ *W¢mnt

1 t — +0o0

{If Im(wemn) < 0: exponentially damped (quasinormal modes, QNMs)

If Im(wemn) > 0: exponentially growing (unstable modes)

Q: Are there any unstable modes ({m(wemn) > 0) in Kerr?

No, for massless general-spin fields in Kerr => Kerr is mode-stable

(Easy proof for superradiant frequencies 0 < Re(w) < |m|Q, and
Whiting’89 proved it for arbitrary w )



Instabilities in Other Settings

e Kerr BH with event horizon removed by a “mirror” (may model
wormholes) has unstable modes (Friedman’78)

Instability timescale ~ secs for supermassive wormholes (eg, Cardoso et
al’08)

e All so far has been for massless fields. But Kerr is unstable under
massive field perturbations (Damour et al’76)

Instability timescale has been used to constrain masses of fields, eg,
mass of Proca field < 4 x 10— 22 eV (Pani et al’'12)



Stability Properties of Extremal Kerr
All results so far were for subextremal Kerr
In extremal Kerr (a = M) :
Field (& derivatives) off the horizon H decays
and

There’re no exponentially-growing modes for massless general-spin
fields in extremal Kerr (Teixeira da Costa’20, Casals&Longo 19)



Stability Properties of Extremal Kerr
All results so far were for subextremal Kerr
In extremal Kerr (a = M) :
Field (& derivatives) off the horizon H decays
and

There’re no exponentially-growing modes for massless general-spin
fields in extremal Kerr (Teixeira da Costa’20, Casals&Longo 19)

And yet...

Transverse nth-derivative on horizon grows as
n n—s—1/2

(Casals,Gralla&Zimmerman’16, Aretakis’10)




It's due to a branch cut that forms at the superradiant-bound frequency
w = mfly by accumulation of QNMs as a — M (Detweiler’80)
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It's due to a branch cut that forms at the superradiant-bound frequency
w = mfly by accumulation of QNMs as a — M (Detweiler’80)

Log[Abs[W]] 5

(Casals&Longo19)

However, Observer-independent scalars (such as (VaGret - VEGret)|y, )

all decay (Burko&Khanna’17)
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Kerr-de Sitter Black Hole

Penrose diagram of Kerr-dS
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Casals&Teixeira da Costa’21: continued fraction eq. for mode fregs. ot
Kerr-dS

(+1) (1)

0= oz(()()) | 0 -1
1) (—1
O, —af el
1 | 0y —altD =1
Oé; ) | 2 — 3

is symmetric under the exchange of any pair of (SQCD) “masses”:

mp =8—&_ + &4 m3 = —s— & + &4
mo =& + &+ my =& — &+ + 26,
,w—mﬂj

where & =1 2

Therefore, the mode fregs. wy,,,,, are also symmetric under m; <+ m,



ma <> m3 allowed us to exclude unstable modes from a subregion of
the superradiant frequency regime

w/m

0.4

0.3
non-superradiant and

0.2 mode stable

Open question: exclude unstable modes from the blue region so as to
prove the mode stability of Kerr-dS
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Loss of predicability
inside the BH

Penrose diagram of Kerr-
Newman-dS is like Kerr-dS’s

this is a timelike singularity,
and so it’s visible to an
observer going into the BH

Unpredictability: the Initial
Value Problem is not well posed




Strong Cosmic Censorship Hypothesis

SCC hypothesis by Penrose’72: if singularities exist inside BHs that exist
in Nature, they’re not visible even to observers inside (i.e., not timelike)

SCC is upheld if, eg, CH is “destroyed” by field perturbations:

A
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SCC hypothesis by Penrose’72: if singularities exist inside BHs that exist
in Nature, they’re not visible even to observers inside (i.e., not timelike)

SCC is upheld if, eg, CH is “destroyed” by field perturbations:

perturbations

7N

timelike

spacelike sing.

sing.

EH

But it’s a hypothesis - it needs to be verified!



Stability of Cauchy Horizon?

Even if (exponentially-decaying) QNMs do not destabilize the outside of
the BH, are they strong enough to destroy the CH as they reach it?

unpredi

ctability .
sing.

CH

Black (\—J ’
EH ((

ONM

If 8 =min(—Im (wgnn)) /K- > 1/2, then QNM waves are too weak

to “destroy” the CH => violation of SCC (Hintz&Vasy 17 & others)



Stability of CH - previous results

CH is “destroyed” by the perturbation (SCC holds) in: Kerr (Dafermos
et al’17) and Kerr-dS (Dias et al.”18)
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CH is “destroyed” by the perturbation (SCC holds) in: Kerr (Dafermos
et al’17) and Kerr-dS (Dias et al.”18)

CH is not “destroyed” (violation of SCC) in Reissner-Nordstrom-dS

(Cardoso et al.”18)
Sod

What happens if we add rotation to it?



Casals&Marinho’20 find violation of SCC in Kerr-Newman-dS but for
unphysical values of parameters (BH charge and A too large)

t B3 (“weakness” of field)
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BH charge approaching its max. value
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Conclusion

- Kerr: mode stability proven

Open question: prove full linear stability under grav. perturbations

- Kerr-dS: only partial mode stability proven

Open question: complete proof of mode stability

- SCC: violated for unphysical parameters in Kerr-Newman-dS

Open questions: can SCC be saved in Kerr-Newman-dS (e.g., by

nonlinearities or quantum effects)? Or better - can SCC be generally
proven?

Weret bien!



