Scalar fields and gravitational molecules

Miguel Zilhão ${ }^{1}$
Laura Bernard Vitor Cardoso Taishi Ikeda
${ }^{1}$ CENTRA, Instituto Superior Técnico, Universidade de Lisboa

December 9 2021, IPhT CEA-Saclay

Outline

2. Scalar fields around binaries

Spectroscopy

String vibrations

(Open University, CC)

Spectroscopy

Tuning fork

$$
\begin{aligned}
f & \approx \frac{\pi K}{8 L^{2}} \sqrt{\frac{E}{\rho}}\left[1.2^{2}, 3^{2}, 5^{2}, \ldots\right] \quad \text { cases }(\mathrm{a}) \text { and }(\\
f & \approx \frac{\pi K}{8 L^{2}} \sqrt{\frac{E}{\rho}}\left[3^{2}, 5^{2}, 7^{2}, \ldots\right] \quad \text { case }(\mathrm{b})
\end{aligned}
$$

(Rossing++92, "On the acoustics of tuning forks")

By measuring the modes we can discover if it is a vibrating string, or something else...

Black Holes (BHs)

Kerr metric

$$
\begin{aligned}
& d s^{2}=-\left(1-\frac{r_{s} r}{\Sigma}\right) c^{2} d t^{2}+\frac{\Sigma}{\Delta} d r^{2}+\Sigma d \theta^{2} \\
&+\left(r^{2}+a^{2}+\frac{r_{s} r a^{2}}{\Sigma} \sin ^{2} \theta\right) \sin ^{2} \theta d \phi^{2}-\frac{2 r_{s} r a \sin ^{2} \theta}{\Sigma} c d t d \phi \\
& r_{s}=\frac{2 G M}{c^{2}}, \quad \Sigma=r^{2}+a^{2} \cos ^{2} \theta, \quad \Delta=r^{2}-r_{s} r+a^{2}
\end{aligned}
$$

- Describes rotating BH with mass M and angular momentum $J=a M$
- Lack of complex multipolar structure is crucial to perform strong-field tests of the theory, for example through the late time relaxation of BHs, as a superposition of quasinormal modes (QNMs)

Quasi-normal modes (QNM)

$$
\frac{d^{2} \Psi}{d r_{*}^{2}}+\left(\omega^{2}-V\right) \Psi=I(\omega, r)
$$

- same decay timescale and ringing for different initial conditions
- ringdown is universal
- only depends on mass, rotation (and electric charge)
- different matter contents produce same $B H$

Black Hole Binaries (BHBs): gravitational molecules?

- If BH are gravitational atoms. . . what is a gravitational molecule?
- Do BH binaries have characteristic ringdown modes? Can they be excited?
- Do "quasibound" states of light scalars engulfing BH binaries exist?

Outline

(9) Introduction

(2) Scalar fields around binaries
(3) Time evolutions

4 Final remarks

Perturbative treatment

- Klein-Gordon equation

$$
\square \phi=\mu^{2} \phi
$$

- Binary metric (to lowest order in a post-Newtonian expansion)

$$
d s^{2}=-\left(1+2 \Phi_{N}\right) d t^{2}+\left(1-2 \Phi_{N}\right) \delta_{i j} d x^{i} d x^{j}
$$

where

$$
\Phi_{N}\left(t, x^{i}\right)=-\frac{M_{1}}{\left|\vec{r}-\vec{r}_{1}(t)\right|}-\frac{M_{2}}{\left|\vec{r}-\vec{r}_{2}(t)\right|}
$$

Non-relativistic limit

$$
\phi=\frac{1}{\sqrt{2 \mu}}\left(\Psi e^{-i \mu t}+\Psi^{*} e^{i \mu t}\right)
$$

moving to the binary rest frame (corotating frame) \bar{X}^{μ}, the Klein-Gordon equation takes the form

$$
i \partial_{\bar{t}} \bar{\Psi}\left(\bar{t}, \bar{x}^{i}\right)=H_{0} \bar{\Psi}\left(\bar{t}, \bar{x}^{i}\right)+i \Omega \partial_{\bar{\varphi}} \bar{\Psi}\left(\bar{t}, \bar{x}^{i}\right)
$$

where

$$
H_{0}=-\frac{1}{2 \mu} \bar{\nabla}^{2}-\frac{\mu M_{1}}{r_{1}}-\frac{\mu M_{2}}{r_{2}}
$$

Unperturbed system

$$
i \partial_{\bar{t}} \bar{\Psi}=H_{0} \bar{\Psi} ; \quad V=-\frac{\mu M_{1}}{r_{1}}-\frac{\mu M_{2}}{r_{2}}
$$

note that the potential V is time-independent.

$$
\bar{\psi}\left(\bar{t}, \bar{x}^{i}\right)=\bar{\psi}\left(\bar{x}^{i}\right) e^{-i \bar{E} \bar{t}}
$$

we then have

$$
\bar{E} \bar{\psi}=-\frac{1}{2 \mu} \bar{\nabla}^{2} \bar{\psi}+V \bar{\psi}
$$

Klein-Gordon equation reduces to the Schrödinger equation in the ionized Di-Hydrogen molecule!

Single black hole limit

At zero separation we are effectively dealing with one single BH :

$$
\bar{\psi}(\bar{r}) \sim e^{-M \mu^{2} \bar{r}}
$$

Length-scale of the scalar field cloud: $\mathcal{S} \sim 1 /\left(M \mu^{2}\right)$

Outline

2 Scalar fields around binaries

(3) Time evolutions

4 Final remarks

Approximate BHB Metric

- Inner Zones (IZ): close to BHs;
- Near Zone (NZ): "intermediate" region;
- Far Zone (FZ): gravitational wave region;
- Buffer Zones (BZ): transition regions.

Gravitational molecules

Black hole binary with separation D

Length scales

- isolated BH of mass $M_{i}: \mathcal{S}_{i} \sim 1 /\left(M_{i} \mu^{2}\right)$
- BH binary with $M=M_{1}+M_{2}: \mathcal{S}_{\mathrm{BHB}} \sim 1 /\left(M \mu^{2}\right)$
- if $\mathcal{S}_{i} \ll D$, a quasibound state can be formed around each BH , feeling a tidal force from the companion object
- if $\mathcal{S}_{i} \gg D$, the companion BH strongly disturbs such a state, destroying it.

However, we can expect that a quasibound state forms around the BHB.

Initial data

$$
D=60 M, \mu M=0.2
$$

Monopole gravitational molecule

Monopole gravitational molecule

$$
D=60 M, \mu M=0.2
$$

Spectrum content

Note: values from last column come from solving the spectra for the Di-hydrogen molecule

Outline

2 Scalar fields around binaries

(3) Time evolutions

(4) Final remarks

Final remarks

- BHs in GR have been compared to the Hydrogen atom in quantum mechanics
- Compelling to draw a parallel between BH binaries and the Hydrogen molecule ion
- Light scalar fields are interesting solutions to some of the most pressing problems in physics, such as the dark matter problem
- In the presence of a background scalar, its dynamics close to a BH binary parallels very closely that of an electron in Di-hydrogen molecule
- Global geodesics for BH binaries seem to be connected to global QNMs
- Possibility of doing spectroscopy of BH binaries?

