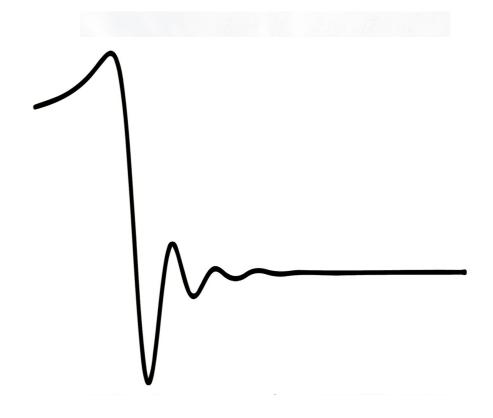
Extreme Mass Ratio Inspirals as LISA probes of fundamental fields

@ Saclay, 9th Dec

In collaboration with N. Franchini, L. Gualtieri, T. Sotiriou, S. Barsanti, P. Pani

Phys. Rev. Lett. 125, 141101 (2020) gr-qc: 2106.11325



Andrea Maselli

EMRI for a reason

Primary $M \sim (10^4 - 10^7) M_{\odot}$ energy ental Secondary such $q = m_p/M \sim (10^{-6} - 10^{-3})$ parameter *Emit GWs in the mHz, golden targets* **AstroPhysics** undamental evolution physics for LISA Nature of compact objects Rich phenomenology: non equatorial, New fields In the grav eccentric orbits, resonances... Extreme Mass Ratio Inspirals matter

Very appealing to test fundamental physics

- O Complete $\sim (10^4 10^5)$ cycles before the plunge: **bless** and **disguise**
 - Precise space-time map and accurate binary parameters
 - Accurate templates to be compared against data

Are EMRI sensitive to new fields?

Extra polarizations as generic features of modified theories of gravity

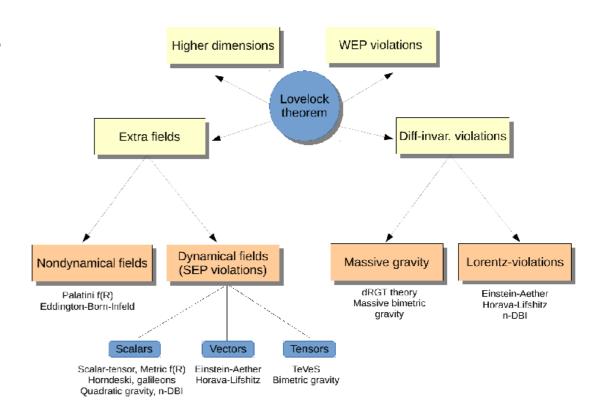
O Tipically, proposed theories feature extra fields or can be reformulated in terms of them

Compact binaries can probe the existence of such new fields

Comparable mass in the inspiral: dipole emission at -1PN Barausse+, PRL 116, 241104 (2016)

Comparable mass in the merger

Okounkova+ PRD 100, 104026 (2019), Witek+, PRD 99, 064035 (2019)



What about very asymmetric binaries like EMRIs?

Testing gravity with EMRIs

It may be tempting to answer NOPE

- O In most scalar-tensor theories BHs are protected by no-hair theorems
- For hairy BHs, the scalar field generally couples with high-order curvature terms, aka dimensionful couplings
- Large suppression for massive objects, as deviations ~ M⁻ⁿ (n>0), but....
 - Never forget of the little guys!

Indeed

- O Scalar fields can leave a significant (detectable) imprint in the GW signal emitted by EMRIs
- For a vast class of theories, the (leading) GR deviations are universal and only controlled by the scalar charge of the little guy

 AM, Franchini, Gualtieri, Sotiriou, PRL 125 (2020)

The setup

Motivation: EMRIs beyond GR

- We need real waveforms to compare against data and GR predictions
- Depending on the theory complexity grows fast [very, very fast]

$$S[\mathbf{g}, \varphi, \Psi] = S_0[\mathbf{g}, \varphi] + \alpha S_c[\mathbf{g}, \varphi] + S_m[\mathbf{g}, \varphi, \Psi]$$

$$S_0 = \int d^4x \frac{\sqrt{-g}}{16\pi} \left(R - \frac{1}{2} \partial_\mu \varphi \partial^\mu \varphi \right)$$
Non-minimal coupling

O Dimensionful coupling $[\alpha] = (mass)^n$

We assume that

- O BH solutions are continuously connected to GR solutions $\alpha \to 0$
- \circ S_c is analytic in φ

The setup

Key simplifications for the exterior space-time occur for

- 1) Theories with no-hair theorems
- 2) Theories which evade no-hair but have dimensionful coupling α with $n \geq 1$
 - O Any correction depend on $\zeta \equiv \frac{\alpha}{M^n} = q^n \frac{\alpha}{m_{\rm p}^n} \ll 1$ $q = \frac{m_p}{M} \ll 1$

The exterior space-time can be approximated by the Kerr metric

For the secondary, consider the skeletonized approach

Eardley, ApJ (1975) Damour EF, PRD (1992)

$$S_{\rm p} = -\int m(\varphi)ds = -\int m(\varphi)\sqrt{g_{\mu\nu}\frac{dy_{\rm p}^{\mu}}{d\lambda}\frac{dy_{\rm p}^{\nu}}{d\lambda}}d\lambda$$

- O Extended body treated as point particle
- $m(\varphi)$ scalar function

The setup

The orbital motion can be studied with perturbation theory in $q \ll 1$

- O GR modifications affect the motion of the particle but not the background
- O The scalar field is a perturbation of a constant value $\varphi = \varphi_0 + \varphi_1$

The field's equations

In our units $[S_0] = (mass)^2$ $[S_c] = (mass)^{2-n}$ $S_c \sim M^{-n}S_0$ $(\zeta \sim q^n)$

$$G_{\mu\nu} = T_{\mu\nu}^{\rm scal} + \alpha T_{\mu\nu}^c + T_{\mu\nu}^{\rm p}$$

$$G_{\mu\nu} = \frac{1}{2} \partial_{\mu} \varphi \partial_{\nu} \varphi + \frac{1}{4} g_{\mu\nu} (\partial \varphi)^2 + -\alpha \frac{16\pi}{\sqrt{-g}} \frac{\delta S_c}{\delta g^{\mu\nu}} + \int m(\varphi) \frac{\delta^{(4)}(x - y_p(\lambda))}{\sqrt{-g}} \frac{dy_p^{\alpha}}{d\lambda} \frac{dy_p^{\beta}}{d\lambda} d\lambda$$
 quadratic in φ
$$\alpha T_{\mu\nu}^c \sim \zeta^2 G_{\mu\nu} \sim q^{2n} G_{\mu\nu}$$

$$\Box \varphi + \frac{8\pi\alpha}{\sqrt{-g}} \frac{\delta S_c}{\delta \varphi} = 16\pi \int m'(\varphi) \frac{\delta^{(4)}(x - y_p(\lambda))}{\sqrt{-g}} d\lambda$$

$$\alpha \frac{\delta S_c}{\delta \varphi} \sim \zeta \Box \varphi \ll \Box \varphi \qquad m(\varphi), m'(\varphi) \text{ evaluated at the value of the solution of$$

exterior scalar field

Almost as in GR

From the scalar field equation inside the world tube, but far way to be weak field. In the body's frame

$$arphi=arphi_0+rac{m_{
m p}\,d}{ ilde{r}}+O\left(rac{m_{
m p}^2}{ ilde{r}^2}
ight)$$
 scalar charge

O Matching with the scalar field equation outside the world tube

$$m(\varphi_0) = m_p$$

$$\frac{m'(\varphi_0)}{m_p} = -\frac{d}{4}$$

Change in the EMRI dynamics universally captured by the scalar charge

$$G_{\mu\nu} = T_{\mu\nu}^{\rm p} = 8\pi m_{\rm p} \int \frac{\delta^{(4)}(x - y_p(\lambda))}{\sqrt{-g}} \frac{dy_p^{\alpha}}{d\lambda} \frac{dy_p^{\beta}}{d\lambda} d\lambda$$
$$\Box \varphi = -4\pi d m_{\rm p} \int \frac{\delta^{(4)}(x - y_p(\lambda))}{\sqrt{-g}} d\lambda$$

$$g$$
rav-sector $g_{lphaeta}=g_{lphaeta}^0+h_{lphaeta}$ scal-sector $arphi=arphi_0+arphi_1$

The wave equation(s)

For Schwarzschild, 3 master equations for 3 perturbations

$$e^{-\lambda} = 1 - 2M/r$$
$$\Lambda = \ell(\ell+1)/2 - 1$$

$$\left[\frac{d^2 R_{\ell m}}{dr_{\star}^2} + \left[\omega^2 - e^{-\lambda} \left(\frac{\ell(\ell+1)}{r^2} - \frac{6M}{r^3}\right)\right] R_{\ell m} = J_{\text{ax}}\right]$$

GR

Regge-Wheeler

$$\frac{d^2 Z_{\ell m}}{dr_{\star}^2} + \left[\omega^2 - \frac{18M^3 + 18M^2 r\Lambda + 6Mr^2\Lambda^2 + 2r^3\Lambda^2(1+\Lambda)}{r^3(3M+r\Lambda)}\right] Z_{\ell m} = J_{\text{pol}}$$

$$\frac{d^2\delta\varphi_{\ell m}}{dr_{\star}^2} + \left[\omega^2 - e^{-\lambda}\left(\frac{\ell(\ell+1)}{r^2} + \frac{2M}{r^3}\right)\right]\delta\varphi_{\ell m} = J_{\varphi}$$

Scalar field

For circular equatorial orbits

Overall scale

$$J_{\varphi} = -d m_{\rm p} \frac{4\pi P_{\ell m}(\frac{\pi}{2})}{r^{3/2}e^{\lambda}} \sqrt{r-3M} \delta(r-r_{\rm p}) \delta(\omega-m\omega_{\rm p})$$
 Overall scale sets by the charge

The GW energy flux

The full solutions at infinity/horizon are needed to compute the emitted gravitational wave fluxes

$$\dot{E}_{\text{grav}}^{\pm} = \frac{1}{64\pi} \sum_{\ell=2}^{\infty} \sum_{m=-\ell}^{\ell} \frac{(\ell+2)!}{(\ell-2)!} (\omega^2 |Z_{\ell m}^{\pm}|^2 + 4|R_{\ell m}^{\pm}|^2) \qquad \dot{E}_{\text{scal}}^{\pm} = \frac{1}{32\pi} \sum_{\ell=1}^{\infty} \sum_{m=-\ell}^{\ell} \omega^2 |\delta\varphi_{\ell m}^{\pm}|^2$$

O The total contribution

$$\dot{E} = \dot{E}_{grav}^{+} + \dot{E}_{grav}^{-} + \dot{E}_{scal}^{+} + \dot{E}_{scal}^{-} = \dot{E}_{GR} + \delta \dot{E}_{d}$$

- O The binary accelerates due to the extra leakage of energy given by the scalar field channel
- \bullet $\delta \dot{E}_d$ enters at the **same** order in **q** as the GR leading dissipative contribution

How much dephasing?

Once we have the total flux emitted by the binary we can determine its adiabatic evolution

O *For the orbital phase*

$$\frac{dr}{dt} = -\dot{E}\frac{dr}{dE_{\rm orb}} , \quad \frac{d\Phi}{dt} = \omega_p = \pm \frac{M^{1/2}}{r^{3/2} \pm \chi M^{3/2}}$$

O *The total phase can be written as*

$$\Phi_d(t) \sim \Phi_{\rm GR}(t) + \delta \Phi_d(t)$$

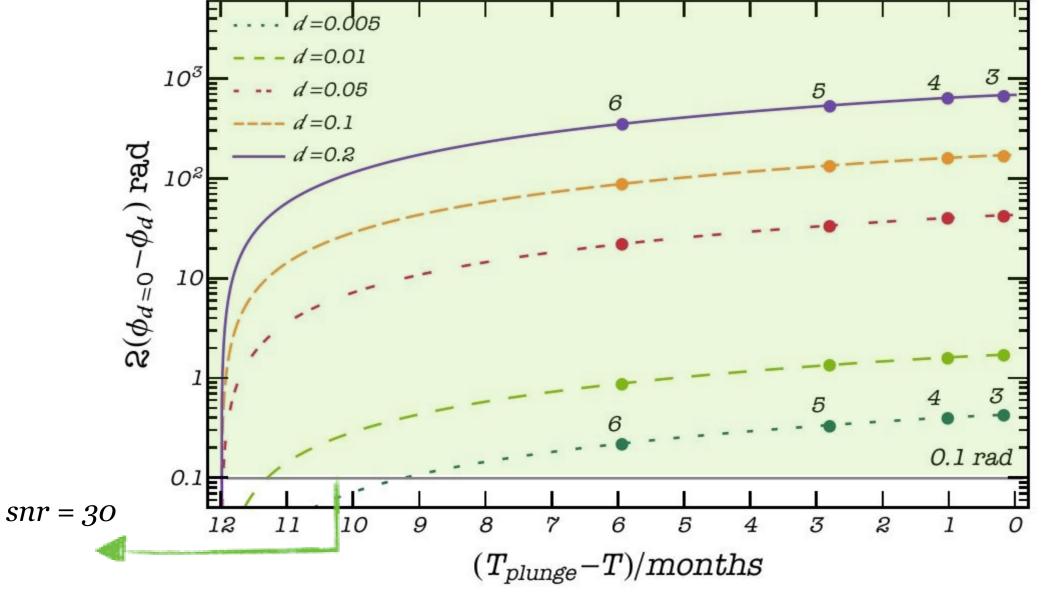
- O Both contributions are of the same order O(1/q)
- The term $q\delta\Phi_d(t)$ depends only on the scalar charge

A first assessment of the charge impact is given by studying the **dephasing** induced on the orbital phase

$$\Phi_{d=0}(t) - \Phi_d(t)$$

How much dephasing?

Difference between GR - GRd phase evolution during the inspiral (12 months the plunge) $(M, m_p) = (10^6, 10) M_{\odot} \quad \chi = 0.9$



gr-qc: 2106.11325

O Potentially able to observe changes induced by scalar charges $d \sim 0.005$

The waveform

The recipe to generate EMRI waveforms

- **O** Compute the total energy flux emitted by the binary $\dot{E} = \dot{E}_{\rm GR} + \delta \dot{E}_d$
- O The flux drives the binary orbital evolution

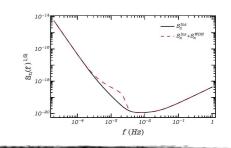
$$\frac{dr(t)}{dt} = -\dot{E}\frac{dr}{dE_{\rm orb}} \quad , \quad \frac{d\Phi(t)}{dt} = \frac{M^{\frac{1}{2}}}{r_p^{3/2}}$$

- **O** Build the GW polarizations $h_+[r(t), \Phi(t)]$, $h_{\times}[r(t), \Phi(t)]$
- O Given the source localization, construct the strain $h(t) = \frac{\sqrt{3}}{2} [h_+ F_+(\theta, \phi, \psi) + h_\times F_\times(\theta, \phi, \psi)]$

Everything as in GR but $\delta \dot{E}_d$, that only depends on the scalar charge

• (rather) Universal family of waveforms to be tested against GR

Detectability in nuce



Quadrupole approximation for h(t) [for laziness]

$$h_{ij}^{\text{TT}} = \frac{2}{D} (P_{il} P_{jm} - \frac{1}{2} P_{ij} P_{lm}) \ddot{I}_{lm}$$

$$h_{ij}^{\text{TT}} = \frac{2}{D} (P_{il} P_{jm} - \frac{1}{2} P_{ij} P_{lm}) \ddot{I}_{lm} \qquad I_{ij} = \int d^3 x T^{tt}(t, x^i) x^i x^j = m_p x^i x^j$$

Scalar product for waveforms
$$\langle h_1|h_2\rangle = 4\Re \int_{f_{\min}}^{f_{\max}} \frac{\tilde{h}_1(f)\tilde{h}_2^{\star}(f)}{S_n(f)} df$$

The faithfulness
$$\mathcal{F}[h_1,h_2] = \max_{\{t_c,\phi_c\}} \frac{\langle h_1|h_2\rangle}{\sqrt{\langle h_1|h_1\rangle\langle h_2|h_2\rangle}}$$

1 perfect match

o what a sh.. template

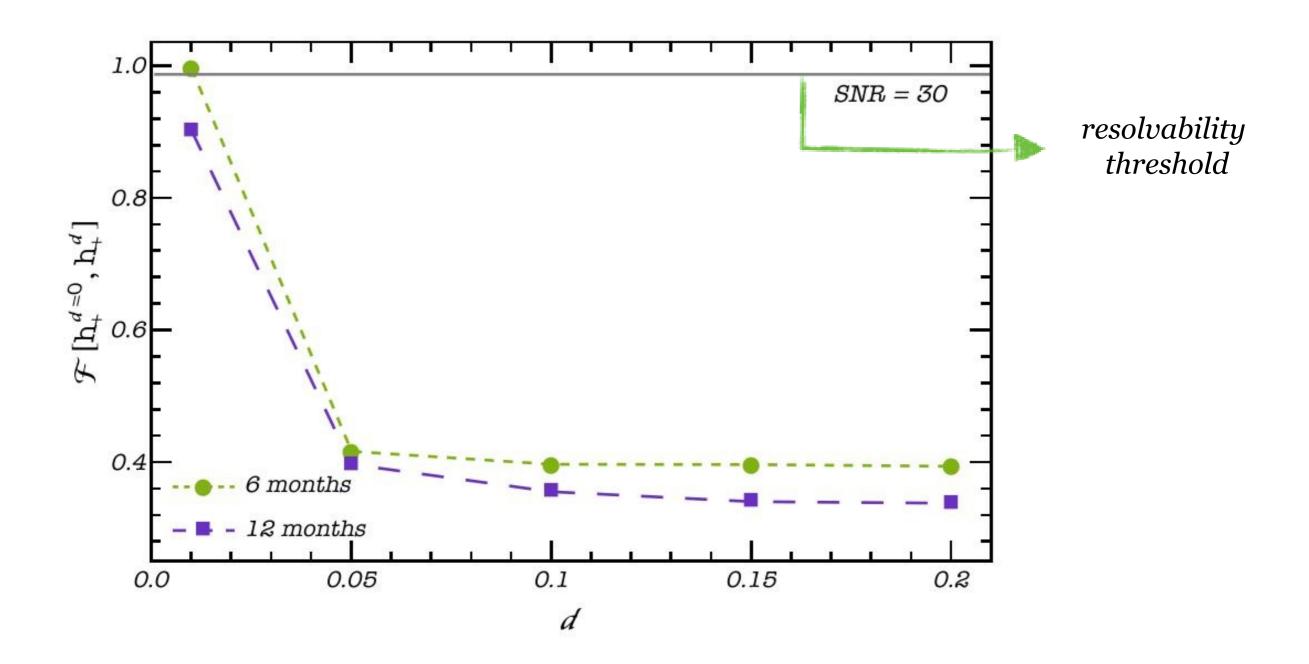
parameters (M,...,d)

For large Signal-to-Noise Ratio, the parameters probability $p(\vec{x}|s) \propto e^{-\frac{1}{2}\Gamma_{ab}\Delta x^a\Delta x^b}$

$$\Gamma_{ab} = 4\Re \int \frac{\partial \tilde{h}(f)}{\partial x_a} \frac{\partial \tilde{h}^*(f)}{\partial x_b} \frac{df}{S_n(f)}$$

• The parameter errors
$$\Sigma_{ab} = (\Gamma^{-1})_{ab} \longrightarrow \sigma_a = \sqrt{\Sigma_{aa}}$$

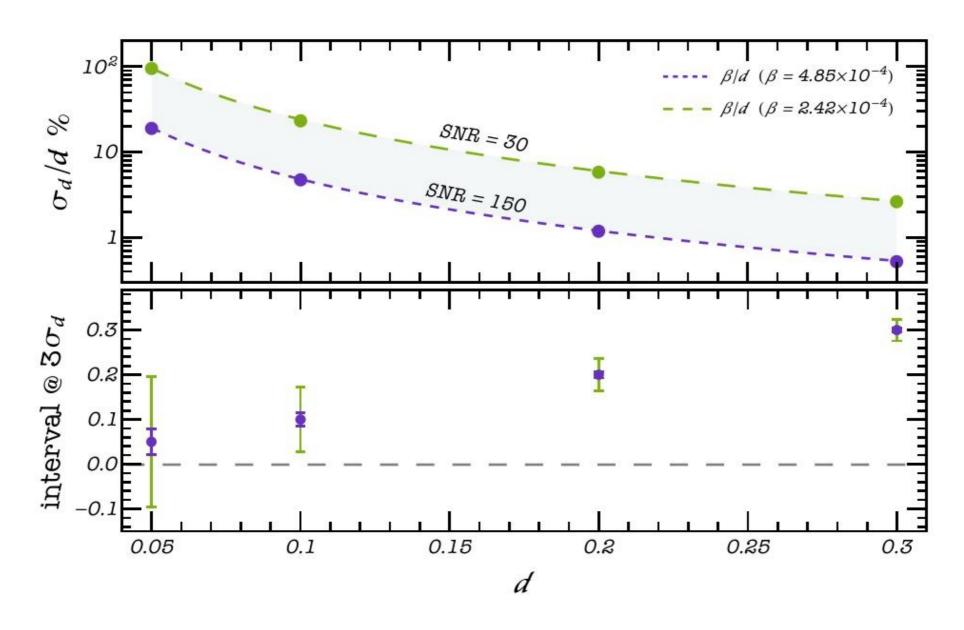
Overlap & Faithfulness



O Potentially able to observe changes induced by scalar charges $d \sim 0.005 - 0.01$

Forecast on LISA bounds

Constraints on the scalar charge for prototype EMRIs with SNR = (30,150)



- LISA potentially able to measure **d** with % accuracy and better
- \circ LISA potentially able to constrain **d** ~ 0.05 to be inconsistent with zero @ at 3- σ

Tracing back the couplings

A notable example: scalar Gauss-Bonnet (sGB) gravity

Joulie & Berti, PRD 100 (2019)

$$\alpha S_c = \frac{\alpha}{4} \int d^4x \frac{\sqrt{-g}}{16\pi} f(\varphi) \mathcal{G}$$

- O n=2, $[\alpha]=mass^2$ $\zeta\equiv\frac{\alpha}{M^2}=q^2\frac{\alpha}{m_2^n}$
- **O** $f(\varphi)$ generic function of the scalar field
- **O** $\mathcal{G} = R^2 4R_{\mu\nu}R^{\mu\nu} + R_{\alpha\beta\gamma\delta}R^{\alpha\beta\gamma\delta}$ Gauss Bonnet invariant
- O The scalar charge is proportional to the dimensionless coupling constant $\beta = \frac{\alpha}{m_p^2}$

$$f(\varphi) = e^{\varphi}$$

$$f(\varphi) = \varphi$$
 (shift-symmetric)

$$d = 2\beta + \frac{73}{30}\beta^2 + \frac{15577}{2520}\beta^3$$

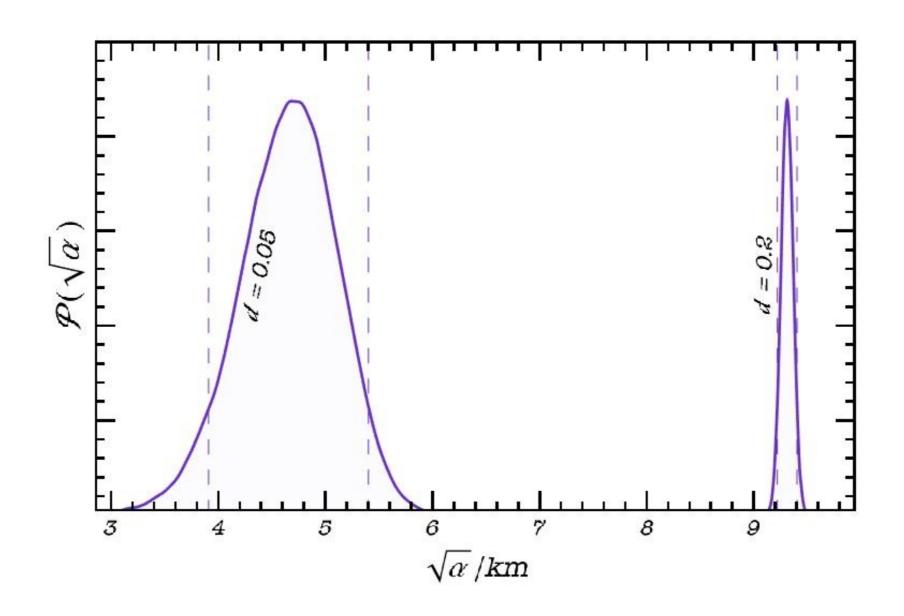
$$d = 2\beta + \frac{73}{60}\beta^3$$

For hairy BHs bounds on **d** can be mapped to bounds on **couplings**

Forecast on LISA bounds: couplings

Map constraints on the charge to constraints on the coupling $d(\beta) \leftrightarrow \beta(d)$

O Shift symmetric sGB $f(\varphi) = \varphi$



Summary

EMRIs are golden binaries to test fundamental physics/astrophysics

For a vast class of theories, waweform changes are driven by the BH scalar charge only

- **O** Universal behavior in terms of d . Ready-to-use waveforms
- O Constraints on the scalar charge can be traced back to the theory's fundamental couplings
- O Easy to extend to vector modes, multiple couplings (with different dimensions) and fields

But

- O Valid at leading order. What about SF? and massive fields? (Susanna Barsanti)
- O Correlation with astrophysical effects
- O More sophisticate analysis with MCMC, FEW (Speri, Franchini underway)

Back up

The perturbation scheme

EMRI small mass ratio naturally leads to use relativistic perturbation theory to describe their evolution

 Consider linear perturbations of a Schwarzschild background induced by the small body

$$g$$
rav-sector scal-sector $g_{lphaeta}=g_{lphaeta}^0+h_{lphaeta} \qquad arphi=arphi_0+arphi_1$

- O Decompose $h_{\alpha\beta}$ and φ_1 in tensor and scalar spherical harmonics
 - For the scalar field

$$\varphi_1(t, r, \theta, \phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \frac{\delta \varphi_{\ell m}(t, r)}{r} Y_{\ell m}(\theta, \phi)$$

O Go to the Fourier space, replace into the field's equation and solve for $\,\delta arphi_{\ell m}$

The perturbation scheme

For the gravitational sector

$$h_{\alpha\beta} = h_{\alpha\beta}^{\text{pol}} + h_{\alpha\beta}^{\text{ax}}$$

$$(-1)^{\ell} \longleftarrow (-1)^{\ell+1}$$

$$\mathbf{h} = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \overline{\mathcal{A}_{\ell m}^{(0)}} \mathbf{a}_{\ell m}^{(0)} + \mathcal{A}_{\ell m}^{(1)} \mathbf{a}_{\ell m}^{(1)} + \mathcal{A}_{\ell m} \mathbf{a}_{\ell m} + \mathcal{B}_{\ell m}^{(0)} \mathbf{b}_{\ell m}^{(0)} + \mathcal{B}_{\ell m} \mathbf{b}_{\ell m} + \mathcal{Q}_{\ell m}^{(0)} \mathbf{c}_{\ell m}^{(0)} + \mathcal{Q}_{\ell m} \mathbf{c}_{\ell m}$$

$$+ \mathcal{D}_{\ell m} \mathbf{d}_{\ell m} + \mathcal{G}_{\ell m} \mathbf{g}_{\ell m} + \mathcal{F}_{\ell m} \mathbf{f}_{\ell m}$$

$$\mathbf{b}_{\ell m} = \frac{n_{\ell} r}{\sqrt{2}} \begin{pmatrix} 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & Y_{\ell m}^{\ell m} & Y_{\ell m}^{\ell m} \\ 0 & Y_{\ell m}^{\ell m} & 0 & 0 \\ 0 & Y_{\ell m}^{\ell m} & 0 & 0 \end{pmatrix}$$

- O 7 polar components + 3 axial harmonics
 - O For a spherically symmetric background the 2 families decouple
- O Go to the Fourier space, and solve for each sector independently
- In the Regge-Wheeler-Zerilli gauge the components reduce to 1 axial and 1 polar functions

What about the spin?

Field equations remain unchanged, but perturbations are on top of a Kerr background with spin **a**

Barsanti, + *in preparation*

- $\textbf{O} \quad \textit{Decomposition in spheroidal harmonics} \quad \varphi_1(t,r,\theta,\phi) = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \tilde{R}_{\ell m}(t,r) S_{\ell m}(\theta) e^{im\phi}$
 - Angular equation

$$\frac{1}{\sin\theta} \frac{d}{d\theta} \left(\sin\theta \frac{dS_{\ell m}}{d\theta} \right) + \left(a^2 \omega^2 \cos^2\theta - \frac{m^2}{\sin^2\theta} + \lambda \right) S_{\ell m} = 0$$

Radial equation

$$\delta\varphi_{\ell m} = \sqrt{r^2 + a^2} \tilde{R}_{\ell m} \qquad \frac{d^2 \delta\varphi_{\ell m}}{dr_{\star}^2} + \left[\omega^2 - V(\omega)\right] \delta\varphi_{\ell m} = J_{\varphi}$$

$$V(\omega) = \frac{4Mrma\omega - a^2m^2 + \Delta(\lambda + \omega^2 a^2)}{(r^2 + a^2)^2} + \frac{\Delta(3r^2 - 4Mr + a^2)}{(r^2 + a^2)^3} - \frac{3\Delta^2 r^2}{(r^2 + a^2)^4}$$

O Decomposition in spheroidal harmonics $J_{\varphi} \propto \delta(r-r_p)\delta(\omega-m\omega_p)$ $\omega_p = \frac{M^{1/2}}{r^{3/2}+aM^{1/2}}$

The recipe for the solution

Solutions for a scattering problem for $\psi_{\ell m} = (R_{\ell m}, Z_{\ell m}, \delta \varphi_{\ell m})$

$$\frac{d^2\psi_{\ell m}}{dr_{\star}^2} + \left[\omega^2 - V\right]\psi_{\ell m} = S$$

O Solve for the homogeneous part with suitably boundary conditions

O Integrate over the source term for the full solution

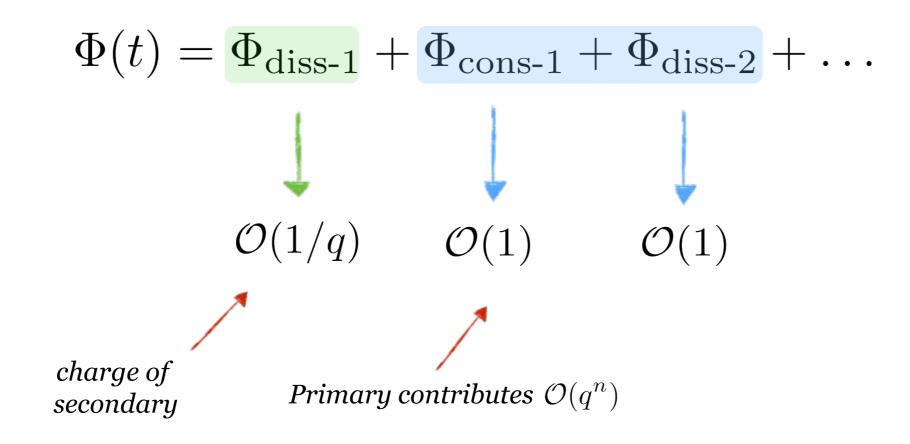
$$\psi_{\ell m}^{\pm} \equiv \lim_{r_{\star} \to \pm \infty} \psi_{\ell m}(r_{*}) = e^{\pm i\omega r_{\star}} \int_{-\infty}^{\infty} \frac{\psi_{\ell m}^{(+)} J}{W} dr_{\star}$$

(Wronskian $W = \psi_{\ell m}^{'(+)} \psi_{\ell m}^{(-)} - \psi_{\ell m}^{'(-)} \psi_{\ell m}^{(+)}$)

ullet For circular orbits the integral greatly simplifies because of $\delta(r-r_p)$

Some power counting

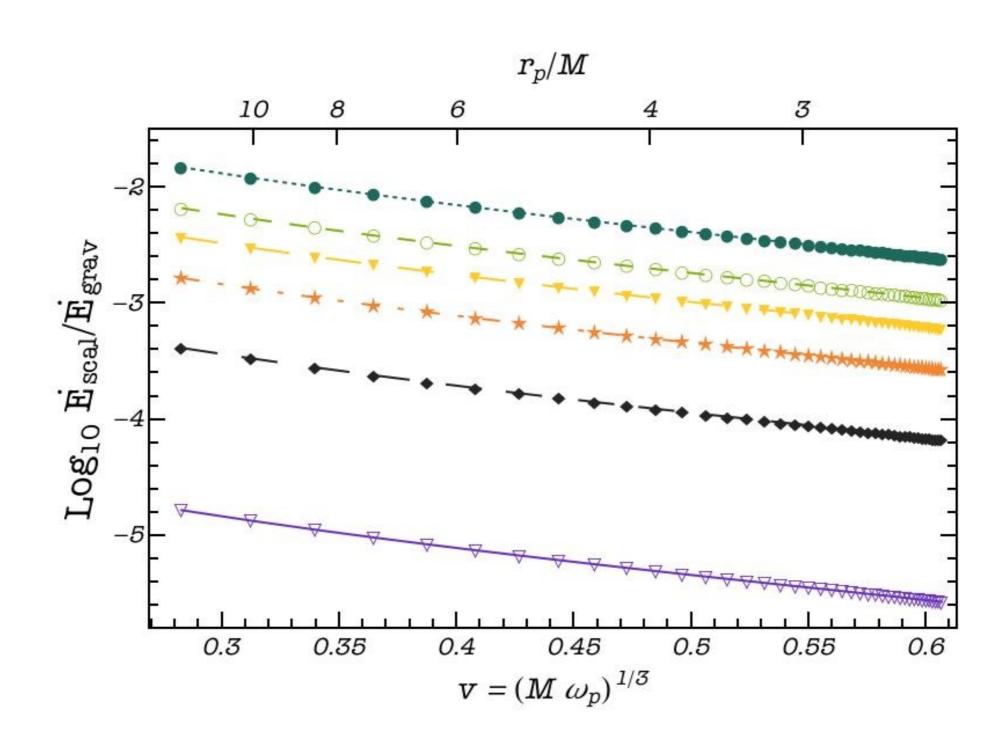
The system phase evolution



- O Sort of re-shaping of the LISA-testing-background-spacetime-idea
- O All of this generalizes immediately for spinning BH —— Kerr as a background

The GW flux (Kerr background)

Scalar-to-tensor flux as v.s. orbital velocity for a spinning primary $\chi = 0.9$



The waveform

Pattern functions depend on time as LISA orbits around the Sun

$$F_{+} = \frac{1 + \cos^{2}\theta(t)}{2}\cos 2\phi(t)\cos 2\psi(t) - \cos\theta(t)\sin 2\phi(t)\sin 2\psi(t)$$
$$F_{\times} = \frac{1 + \cos^{2}\theta(t)}{2}\cos 2\phi(t)\sin \psi(t) + \cos\theta(t)\sin 2\phi(t)\cos 2\psi(t)$$

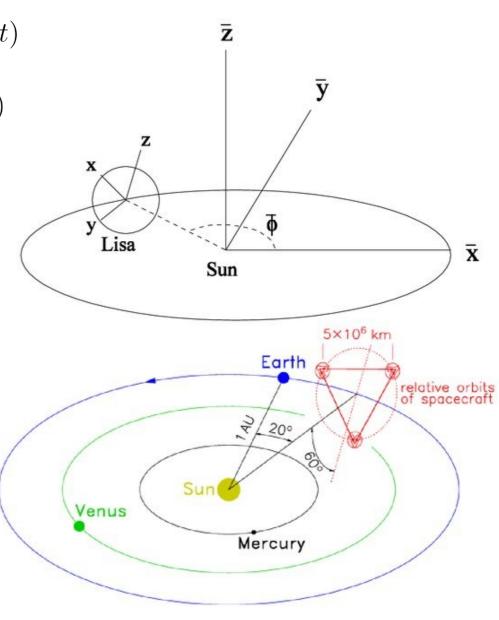
O Express all the angles in a Solar system fixed reference frame

$$\cos \theta(t) = \frac{1}{2} \cos \theta_{s} - \frac{\sqrt{3}}{2} \sin \theta_{s} \cos[\phi_{t} - \phi_{s}]$$

$$\phi(t) = \alpha_{0} + \phi_{t} + \tan^{-1} \left[\frac{\sqrt{3} \cos \theta_{s} + \sin \theta_{s} \cos[\phi_{t} - \phi_{s}]}{2 \sin \theta_{s} \sin[\phi_{t} - \phi_{s}]} \right]$$

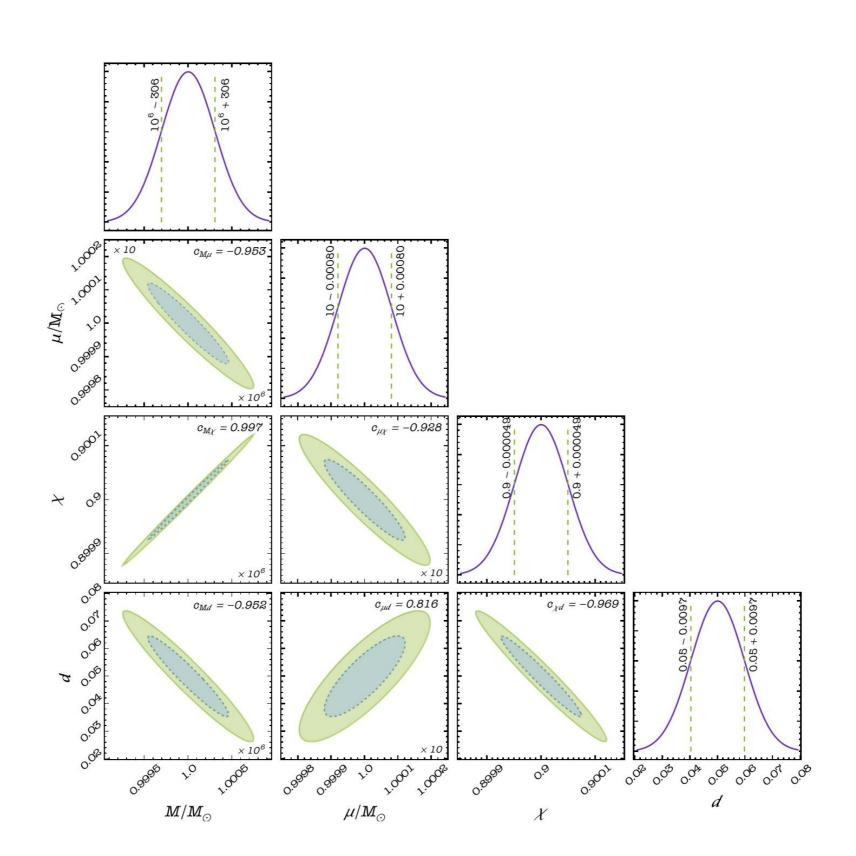
O Add Doppler shift

$$\Phi \to \Phi + 2\pi R_{\odot} \sin \theta_s \cos \left(\frac{2\pi t}{T} - \phi_s\right)$$



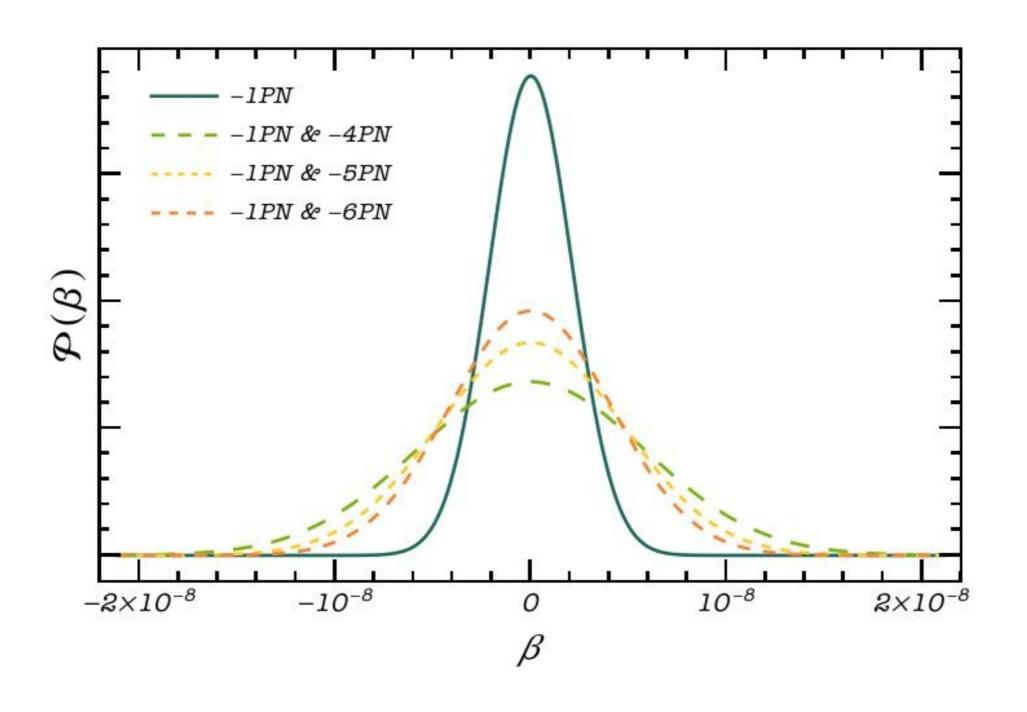
Berti +, PRD 71 (1995)

Correlation with the environment



Correlation with the environment

What about multiple competing effects? $h = Ae^{i\psi_{\text{GW}}}$ $\psi_{\text{GW}} = \psi_{\text{BH}} + \beta (M\pi f)^b$



The rotating dephasing

Barsanti, + *in preparation*

