Black hole sensitivities in Einstein-scalar-Gauss-Bonnet gravity

Félix-Louis Julié Max Planck Institute For Gravitational Physics (Albert Einstein Institute), Potsdam

Work in prep. with H. O. Silva, E. Berti and N. Yunes

GdR Ondes Gravitationnelles

December 9, 2021

The era of gravitational wave astronomy

- GW150914: first observation of a BBH coalescence by LIGO-Virgo
- GW170817: first BNS with EM counterparts (multimessenger astronomy)
- O3: 56 gravitational-wave detections between April 2019 and March 2020
- Since March 2020: O4 in preparation, possibly with KAGRA...

Opportunity of **new tests of general relativity and modified gravities**, in the strong-field regime of a compact binary coalescence.

"Knowing the chirp to hear it"...

In general relativity: PN theory, self-force calculations, EOB framework, numerical relativity...

To be generalized to modified gravities, such as Einstein-scalar-Gauss-Bonnet theory.

Einstein-Scalar-Gauss-Bonnet gravity

ESGB vacuum action (G = c = 1)

$$I_{\rm ESGB} = \frac{1}{16\pi} \int d^4 x \sqrt{-g} \left(R - 2g^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi + \alpha f(\varphi) \mathscr{R}_{\rm GB}^2 \right)$$

- Massless scalar field φ
- Gauss-Bonnet scalar $\mathscr{R}^2_{\mathrm{GB}} = R^{\mu\nu\rho\sigma}R_{\mu\nu\rho\sigma} 4R^{\mu\nu}R_{\mu\nu} + R^2$
- Fundamental coupling α with dimensions L^2 and $f(\varphi)$ defines the ESGB theory
- $\int d^D x \sqrt{-g} \mathscr{R}_{GB}^2$ is a boundary term in $D \leq 4$ [see e.g. Myers 87]

Second order field equations

$$\begin{split} R_{\mu\nu} &= 2\partial_{\mu}\varphi\partial_{\nu}\varphi - 4\alpha \left(P_{\mu\alpha\nu\beta} - \frac{g_{\mu\nu}}{2}P_{\alpha\beta}\right)\nabla^{\alpha}\nabla^{\beta}f(\varphi) \\ & \Box\varphi = -\frac{1}{4}\alpha f'(\varphi)\mathcal{R}_{\rm GB}^2 \end{split}$$

with
$$P_{\mu\nu\rho\sigma} = R_{\mu\nu\rho\sigma} - 2g_{\mu[\rho}R_{\sigma]\nu} + 2g_{\nu[\rho}R_{\sigma]\mu} + g_{\mu[\rho}g_{\sigma]\nu}R_{\sigma]\nu}$$

1. Introduction

Hairy black holes in ESGB gravity

Analytical solutions in the small Gauss-Bonnet coupling α limit

• Einstein-dilaton-Gauss-Bonnet, $f(\varphi) = e^{\varphi}$

Mignemi-Stewart 93 at $\mathcal{O}(\alpha^2)$, Maeda at al. 97 at $\mathcal{O}(\alpha)$, Yunes-Stein 11 at $\mathcal{O}(\alpha)$

Ayzenberg-Yunes 14 at $\mathcal{O}(\alpha^2, S^2)$, Pani et al. 11 at $\mathcal{O}(\alpha^2, S^2)$, Maselli et al. 15 at $\mathcal{O}(\alpha^7, S^5)$

• Shift-symmetric theories, $f(\varphi) = \varphi$

Sotiriou-Zhou 14 at $\mathcal{O}(\alpha^2)$

• Generic ESGB theories

Julié-Berti 19 at $\mathcal{O}(\alpha^4)$

Numerical solutions

• Einstein-dilaton-Gauss-Bonnet, $f(\varphi) = e^{\varphi}$

Kanti et al. 95, Pani-Cardoso 09, Kleihaus 15 (includes spins)

• Shift-symmetric theories, $f(\varphi) = \varphi$

Delgado et al. 20 (includes spin)

• Generic ESGB theories

Antoniou et al. 18

• Quadratic couplings, $f(\varphi) = \varphi^2(1 + \lambda \varphi^2)$ and $f(\varphi) = -e^{-\lambda \varphi^2}$

Doneva-Yazadjiev 17, Silva et al. 17, Minamitsuji-Ikeda 18, Macedo et al. 19, Dima-Barausse et al. 20, etc...

"Skeletonizing" an ESGB compact binary system

[in GR: Mathisson 1931, Infeld 1950,...]

$$I_{\rm ESGB} = \frac{1}{16\pi} \int d^4x \sqrt{-g} \left(R - 2g^{\mu\nu} \partial_{\mu}\varphi \partial_{\nu}\varphi + \alpha f(\varphi) \mathcal{R}_{\rm GB}^2 \right) + I_{\rm pp}$$

Generic ansatz for compact bodies [FLJ-Berti, PRD100 (2019) 10, 104061] $I_{\rm pp}[g_{\mu\nu}, \varphi, \{x^{\mu}_{A}\}] = -\sum_{A} \int m_{A}(\varphi) \, ds_{A}$

with $ds_A = \sqrt{-g_{\mu\nu}dx_A^{\mu}dx_A^{\nu}}$.

- $m_A(\varphi)$ is a function of the local value of φ to encompass the effect of the background scalar field on the equilibrium of body A [Eardley 75, Damour-Esposito-Farèse 92].
- Starting point for post-newtonian calculations: $\mathcal{O}\left(\frac{v}{c}\right)^{2n} \sim \mathcal{O}\left(\frac{GM}{r}\right)^{n}$ corrections to Newton

$$\ln m_{A}(\varphi) = \ln m_{A}^{0} + \alpha_{A}^{0} \varphi + \frac{1}{2} \beta_{A}^{0} \varphi^{2} + \cdots$$

$$I^A_{\rm pp}[g_{\mu\nu},\varphi,x^{\mu}_A] = -\int m_A(\varphi)\,ds_A$$

Question: How to derive $m_A(\varphi)$ for an ESGB black hole?

Answer: by identifying the BH's fields to those sourced by the particle.

$$R_{\mu\nu} = 2\partial_{\mu}\varphi\partial_{\nu}\varphi - 4\alpha \left(P_{\mu\alpha\nu\beta} - \frac{1}{2}g_{\mu\nu}P_{\alpha\beta}\right)\nabla^{\alpha}\nabla^{\beta}f(\varphi) + 8\pi \left(T_{\mu\nu}^{A} - \frac{1}{2}g_{\mu\nu}T^{A}\right) \quad \text{with} \quad T_{A}^{\mu\nu} = m_{A}(\varphi)\frac{\delta^{(3)}(\mathbf{x} - \mathbf{x}_{A}(t))}{\sqrt{gg_{\alpha\beta}\frac{dx_{A}^{\alpha}}{dt}\frac{dx_{A}^{\beta}}{dt}}\frac{dx_{A}^{\mu}}{dt$$

Fields of the particle A in its rest frame $x_A^i = 0$, harmonic gauge $\partial_{\mu}(\sqrt{-g}g^{\mu\nu}) = 0$

$$g_{\mu\nu} = \eta_{\mu\nu} + \delta_{\mu\nu} \left(\frac{2m_A(\varphi_{\infty})}{\tilde{r}} \right) + \mathcal{O}\left(\frac{1}{\tilde{r}^2}\right)$$
$$\varphi = \varphi_{\infty} - \frac{1}{\tilde{r}} \frac{dm_A}{d\varphi}(\varphi_{\infty}) + \mathcal{O}\left(\frac{1}{\tilde{r}^2}\right)$$

Fields of the ESGB black hole Isotropic coordinates

$$g_{\mu\nu} = \eta_{\mu\nu} + \delta_{\mu\nu} \left(\frac{2M_{\rm ADM}}{\tilde{r}}\right) + \mathcal{O}\left(\frac{1}{\tilde{r}^2}\right)$$
$$\varphi = \varphi_{\infty} + \frac{D}{\tilde{r}} + \mathcal{O}\left(\frac{1}{\tilde{r}^2}\right)$$

Matching conditions

(a) $m_A(\varphi_\infty) = M_{ADM}$ (b) $m'_A(\varphi_\infty) = -D$

[FLJ JCAP 01 (2018) 026] [FLJ-Berti, PRD100 (2019) 10, 104061]

ESGB black hole thermodynamics

• Temperature:

$$T = \frac{\kappa}{4\pi} \quad \text{where} \quad \kappa^2 = -\frac{1}{2} (\nabla_\mu \xi_\nu \nabla^\mu \xi^\nu)_{r_{\rm H}} \quad \text{is the surface gravity}$$

• Wald entropy:

$$\begin{split} S_{\rm w} &= - \, 8\pi \! \int_{r_{\rm H}} \! \! d\theta d\phi \sqrt{\sigma} \frac{\partial \mathscr{L}}{\partial R_{\mu\nu\rho\sigma}} \epsilon_{\mu\nu} \epsilon_{\rho\sigma} \qquad \text{with } \epsilon_{\mu\nu} = n_{[\mu} l_{\nu]} \\ \\ S_{\rm w} &= \frac{\mathscr{A}_{\rm H}}{4} + 4\alpha \pi f(\varphi_{\rm H}) \qquad \text{in ESGB gravity.} \end{split}$$

• Mass as a global charge:

$$M = M_{\rm ADM} + \int D \, d\varphi_{\infty}$$

[Henneaux et al. 02, Cardenas et al. 16, Anabalon-Deruelle-FLJ 16,...]

The variations of S_w and M with respect to the BH's integration constants satisfy:

 $T\delta S_{\rm w} = \delta M$

Reminder: matching conditions

(a) $m_A(\varphi_\infty) = M_{ADM}$ (b) $m'_A(\varphi_\infty) = -D$ (a) and (b) $\Rightarrow \delta M = \delta M_{ADM} + D\delta \varphi_{\infty} = 0$

As a consequence, $\delta S_{\rm w} = 0$

A skeletonized black hole is described by a sequence of constant Wald entropy equilibrium configurations.

Example: numerical sensitivity of an Einstein-dilaton-Gauss-Bonnet black hole

$$I_{\rm EDGB} = \frac{1}{16\pi} \int d^4 x \sqrt{-g} \left(R - 2g^{\mu\nu} \partial_{\mu} \varphi \partial_{\nu} \varphi + \frac{1}{4} \alpha \, e^{2\varphi} \mathcal{R}_{\rm GB}^2 \right)$$

• Static, spherically symmetric spacetime in Schwarzschild-Droste coordinates

$$ds^{2} = -A(r)dt^{2} + B(r)^{-1}dr^{2} + r^{2}d\phi^{2}$$
, $\varphi = \varphi(r)$

• The Klein-Gordon, and (tt) and (rr) components of the Einstein equations yield a system of coupled 2nd order differential equations on A and φ

$$A'' = A''(A, A', \varphi, \varphi') , \quad \varphi'' = \varphi''(A, A', \varphi, \varphi') \quad \text{together with} \quad B(A, A', \varphi, \varphi')$$

• Four initial conditions for A, φ and their first derivatives. On the assumed horizon radius $r_{\rm H}$, A = 0:

$$A(r_*) = A_1^{\rm H}(r_* - 1) + \dots$$

$$\varphi(r_*) = \varphi_{\rm H} + \varphi_1^{\rm H}(r_* - 1) + \dots$$

with
$$r_* \equiv r/r_{\rm H}$$
 and $a' \equiv da/dr_*$

- Since $A_1^{\rm H}$ is pure gauge, black holes depend on two integration constants only.
- Choose $\varphi_{\rm H}$ and the irreducible mass $\mu_A = \sqrt{S_{\rm w}/4\pi}$

$$\varphi_{1}^{H} = \frac{-1 + \sqrt{1 - 6\alpha_{*}^{2}e^{4\varphi_{H}}}}{2\alpha_{*}e^{2\varphi_{H}}} \qquad \text{with} \quad \alpha_{*} \equiv \alpha/r_{H}^{2} = \frac{1}{4\mu_{A}^{2}/\alpha - e^{2\varphi_{H}}}$$

• Extract $M_{\rm ADM}$, D and φ_{∞} from the asymptotic $\mathcal{O}(1/r)$ fall off of the fields

$$B = 1 - \frac{2M_{\text{ADM}}}{r} + \mathcal{O}(1/r^2) \qquad \varphi = \varphi_{\infty} + \frac{D}{r} + \mathcal{O}(1/r^2)$$

3. The numerical sensitivity of an EDGB black hole

The fate of black hole binaries

 $\frac{G_{AB}M}{R_{\rm crit}} = (G_{AB}M\dot{\phi}_{\rm crit})^{2/3} + \mathcal{O}(v^4)$

• A black hole binary $(\mu_A^2/\alpha, \mu_B^2/\alpha)$ must simultaneously satisfy

(a)
$$\varphi_{\infty}^{A} + \frac{1}{2} \ln\left(\frac{\alpha}{\mu_{A}^{2}}\right) < -0.276$$

(b) $\varphi_{\infty}^{B} + \frac{1}{2} \ln\left(\frac{\alpha}{\mu_{B}^{2}}\right) < -0.276$

• We estimate φ_{∞}^{A} and φ_{∞}^{B} perturbatively around $\varphi_{\infty}^{A/B} = 0$ in the PN framework. At Newtonian order $(R = |\mathbf{x}_{A} - \mathbf{x}_{B}|)$:

$$\varphi_{\infty}^{A} = \varphi(t, \mathbf{x}_{A}) = -\frac{m_{B}^{0} \alpha_{B}^{0}}{R} + \mathcal{O}(v^{4}) \quad , \quad \varphi_{\infty}^{B} = \varphi(t, \mathbf{x}_{B}) = -\frac{m_{A}^{0} \alpha_{A}^{0}}{R} + \mathcal{O}(v^{4})$$

• (a) and (b) depend only on R, α/μ_A^2 and α/μ_B^2 .

When
$$R \to \infty$$
 (far inspiral), $\varphi_{\infty}^{A} = \varphi_{\infty}^{B} = 0$ and
 $\alpha/\mu_{A}^{2} < 0.576$, $\alpha/\mu_{B}^{2} < 0.576$ see also [Witek et al. 2019]

• When R is finite, φ_{∞}^{A} and φ_{∞}^{B} are positive and tighten (a) and (b); the latter can saturate before the system reaches its light-ring

$$R_{\rm LR} = 3G_{AB}M \ ,$$

where
$$G_{\!AB}=1+\alpha^0_A\alpha^0_B$$
 and $M=m^0_A+m^0_B$.

Conclusion

- The ESGB two-body Lagrangian is the same as that of scalar-tensor (ST) theories at 3PN, modulo a finite Gauss-Bonnet 3PN contribution given in [*FLJ-Berti 19*].
- The ST two-body Lagrangian is known at 2PN [*Mirshekari-Will 13*] and **3PN** [*Bernard 19*].
- The energy fluxes are **fully known** at -1PN, 0PN [*Damour-Esposito-Farèse 92*] and **1PN** [*Lang 14*] as they only differ from those of ST from 2PN on [*Yagi et al. 12, see also Shiralilou et al. 20-21*].
- The "EOBization" of ST theories at 2PN in [*FLJ-Deruelle 17*] includes ESGB gravity.
- The quantities above can now be fully specified for hairy binary BHs in ESGB theories with dilatonic couplings $f(\varphi) = e^{2\varphi}/4$, but also shift symmetric couplings $f(\varphi) = 2\varphi$.

Ongoing and future developments

- Include "spontaneously scalarized" black holes in ESGB models with quadratic couplings $f(\varphi) = e^{\varphi^2}$ [Silva et al. 17].
- Generalize our work to **spinning black holes**.
- Further explore the highlighted BBH parameter space using higher PN orders or numerical relativity? [see also Witek et al. 19, Okounkova 20, East-Ripley 20 for numerical waveforms in the small α limit or East-Ripley 21 for numerical head-on collisions with large α].

Thank you for your attention.