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1. Introduction

The era of gravitational wave astronomy

e GW150914: first observation of a BBH coalescence by LIGO-Virgo

e GW170817: first BNS with EM counterparts (multimessenger astronomy)

e O3: 56 gravitational-wave detections between April 2019 and March 2020

e Since March 2020: O4 in preparation, possibly with KAGRA...

Opportunity of new tests of general relativity and modified gravities, in the
strong-field regime of a compact binary coalescence.



1. Introduction

“Knowing the chirp to hear it"...
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[courtesy Alexandre Le Tiec]

In general relativity: PN theory, self-force calculations, EOB framework,

numerical relativity...

To be generalized to modified gravities, such as Einstein-scalar-Gauss-Bonnet theory.



1. Introduction

Einstein-Scalar-Gauss-Bonnet gravity

ESGB vacuum action (G =c=1)
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e Massless scalar field ¢

e Gauss-Bonnet scalar &g, = R¥P°R,, ., — 4R"R,, + R?

e Fundamental coupling & with dimensions L? and f(¢) defines the ESGB theory

o Ide —g%éB is a boundary term in D < 4 [see e.g. Myers 87]

Second order field equations
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1. Introduction

Hairy black holes in ESGB gravity

Analytical solutions in the small Gauss-Bonnet coupling a limit
e Einstein-dilaton-Gauss-Bonnet, f(¢p) = e’
Mignemi-Stewart 93 at O(a?), Maeda at al. 97 at O(@), Yunes-Stein 11 at O(a)
Ayzenberg-Yunes 14 at O(a?,S?), Pani et al. 11 at O(a?, S%), Maselli et al. 15 at O(a’, S°)

e Shift-symmetric theories, f(¢) = ¢
Sotiriou-Zhou 14 at O(a?)
e Generic ESGB theories

Julié-Berti 19 at O(a®)

Numerical solutions
e Einstein-dilaton-Gauss-Bonnet, f(¢p) = e’
Kanti et al. 95, Pani-Cardoso 09, Kleihaus 15 (includes spins)
e Shift-symmetric theories, f(¢p) = ¢
Delgado et al. 20 (includes spin)
e Generic ESGB theories
Antoniou et al. 18

2

e Quadratic couplings, f(¢) = (p2(1 + /l(pz) and f(p) = — e~
Doneva-Yazadjiev 17, Silva et al. 17, Minamitsuji-lkeda 18, Macedo et al. 19,

Dima-Barausse et al. 20, etc...



2. The skeletonization of an ESGB black hole

“Skeletonizing” an ESGB compact binary system

[in GR: Mathisson 1931, Infeld 1950,...]|
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Igsge = Ten [d“x, /—g <R —2g¢"0,00,¢ + af(qo)gééB> + 1,

Generic ansatz for compact bodies [FLJ-Berti, PRD100 (2019) 10, 104061]
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with ds; =y /= g,,dxjdx;

o m,(@) is a function of the local value of ¢ to encompass the effect of the background scalar
field on the equilibrium of body A [Eardley 75, Damour-Esposito-Farése 92].
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2. The skeletonization of an ESGB black hole
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Question: How to derive m,(¢) for an ESGB black hole?

Answer: by identifying the BH's fields to those sourced by the particle.
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Fields of the particle A in its rest frame

xi = 0, harmonic gauge 9,(,/—gg") =0

Fields of the ESGB black hole

Isotropic coordinates
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Matching conditions

(a) my(py) = Mypy [FLJ JCAP 01 (2018) 026]
(b) mi(p) =—D [FLJ-Berti, PRD100 (2019) 10, 104061]



2. The skeletonization of an ESGB black hole

ESGB black hole thermodynamics

e Temperature:

T = i where k% = — —(V &, VHEY), s the surface gravity

e Wald entropy:

Sy =— snjdedg/)\/— €€ 0 with €, = n,l,,

,uvpa

W

Yy . .
Sy = e + 4arf(py) in ESGB gravity.

e Mass as a global charge:

[Henneaux et al. 02, Cardenas et al. 16,
M = Mapm + JD Ao, Anabalon-Deruelle-FLJ 16,...]

The variations of S, and M with respect to the BH's integration constants satisfy:

168, = oM
Reminder: matching conditions (a) and (b) = M = M,y + D = 0
(a) mA(Cooo) — MADM As a consequence, 4S5, =0
(b) my(ps,) =—D A skeletonized black hole is described by a sequence of constant

Wald entropy equilibrium configurations.



3. The numerical sensitivity of an EDGB black hole

Example: numerical sensitivity of an Einstein-dilaton-Gauss-Bonnet black hole

1 1
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e Static, spherically symmetric spacetime in Schwarzschild-Droste coordinates
ds> = — A(ndt* + B)"Ydr* + r’d¢?* , ¢ = @)

e The Klein-Gordon, and (¢¢) and (rr) components of the Einstein equations yield a system of coupled 2nd

order differential equations on A and ¢

A"=A"AALp,9), ¢"=¢"(A,A@,9")| together with B(A,A’, ¢, ¢’).

e Four initial conditions for A, ¢ and their first derivatives. On the assumed horizon radius ry , A = O:

A(ry) = AF(}’* —1D)+... with r. =r/rg and a’' =daldr.

e Since AIH is pure gauge, black holes depend on two integration constants only.

e Choose @y and the irreducible mass p, =+/S,,/4n
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e Extract M py, D and ¢, from the asymptotic O(1/r) fall off of the fields
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3. The numerical sensitivity of an EDGB black hole
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3. The numerical sensitivity of an EDGB black hole

The fate of black hole binaries

e A black hole binary (u?/a, uj/a) must simultaneously satisfy
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4. Conclusion

Conclusion

e The ESGB two-body Lagrangian is the same as that of scalar-tensor (ST) theories at 3PN, modulo a
finite Gauss-Bonnet 3PN contribution given in [FLJ-Berti 19|.

e The ST two-body Lagrangian is known at 2PN [Mirshekari-Will 13] and 3PN [Bernard 19].

® The energy fluxes are fully known at -1PN, OPN [Damour-Esposito-Farése 92| and 1PN [Lang 14] as they
only differ from those of ST from 2PN on [Yagi et al. 12, see also Shiralilou et al. 20-21].

e The "EOBization” of ST theories at 2PN in [FLJ-Deruelle 17] includes ESGB gravity.

® The quantities above can now be fully specified for hairy binary BHs in ESGB theories with dilatonic
couplings f(¢) = e>?/4, but also shift symmetric couplings f(¢) = 2¢.

Ongoing and future developments

e Include “spontaneously scalarized” black holes in ESGB models with quadratic couplings

flp) = e’ [Silva et al. 17].
e Generalize our work to spinning black holes.

e Further explore the highlighted BBH parameter space using higher PN orders or numerical relativity?

[see also Witek et al. 19, Okounkova 20, East-Ripley 20 for numerical waveforms in the small a limit or

East-Ripley 21 for numerical head-on collisions with large a].

Thank you for your attention.



