BSM phenomenology at the LHC using Monte Carlo tools

Alexander Belyaev

Southampton University & Rutherford Appleton LAB

March 17, 2010

FeynRules 2010 Workshop on automatization for BSM physics

is the crucial link What does this link actually mean?

Alexander Belyaev

http://www.ippp.dur.ac.uk/montecarlo/BSM/

http://www.ippp.dur.ac.uk/montecarlo/BSM/

What is the most time-consuming link?

http://www.ippp.dur.ac.uk/montecarlo/BSM/

What is the most time-consuming link?

Even with the help of FeynRules and LanHEP this link requires serious theoretical work to introduce new model!

Another crucial link

Theorists

Experimentalists

- Theorist is dreaming about confirming his beautiful theory at the LHC Experimentalist is dreaming about exciting signals at the LHC
- But there are many different theories and many respective signatures preferred by different people ... and just one underlying theory preferred by Nature!
- Can we delineate THIS theory from LHC signatures?

To answer this question theorists and experimentalists should work very tightly together

- to have quick and multiple mutual feedback loops
- to mentor each other, learn theoretical and experimental details
- To predict new signatures and converge finally on the theory which can be delineated from others

What underlying theory should explain?

Promising candidates for underlying theory ...

- Supersymmetry:
 - cMSSM, MSSM, NMSSM, E₆SSM, ...
- Walking Technicolor
- Little Higgs models with T-parity
- Extradimensional Models:
 - Universal and Warp extra dimensions

Signatures could look alike

The strategy for delineating of underlying theory

The strategy for delineating of underlying theory

NE

First Steps towards "Dictionary"

A.B., Asesh Datta, Rohini Godbole, Bruce Mellado, Andreas Nyffeler, Chara Petridou, D.P. Roy, Pramana 72:229-238,2009. e-Print: arXiv:0806.2838 [hep-ph]

Variables	SUSY (MSSM)	LHT	UED
	heavy partners	heavy partners	heavy partners
Spin	differ in spin	have the same	have the same
	by 1/2	spin, no heavy	spin
		gluon	
Higher level	NO	NO	YES
modes	heavy partners	heavy partners	heavy partners
N_{l+l+}/N_{l-l-}	$R_{SUSY} < R_{LHT}$	R_{LHT}	$R_{UED} \simeq R_{LHT}$
	from several	only from	only from
SS leptons rates	channels:	SS heavy	SS heavy
	SS heavy fermions,	fermions	fermions
	Majorana fermions		
$R = \frac{N(\not{\!\!E}_T + jets)}{N(l's + \not{\!\!E}_T + jets)}$	$R_{\rm SUSY}$	$R_{\rm LHT} < R_{ m SUSY}$	$R_{ m UED}$
			to be studied
b-jet multiplicity	enhanced (FP)	not enhanced	not enhanced
Single heavy top	NO	YES	YES
			via KK2 decay
polarization $tt + \not\!$	to be studied	to be studied	to be studied
effects $\tau \tau + E_T$	to be studied	to be studied	to be studied
			typically low for
Direct DM	high (FP)	low	$\gamma_1(5D) DM [22]$
detection rate	low (coann)	(Bino-like LTP)	typically high for
			$\gamma_{H}(6D) DM [22]$

What we can do at this workshop?

- Define the strategy on joint effort on creating and validation of FR for the most requested models
- Discuss related physics/publications
- Define the way of unambiguous reproduction of parton-level events
 - need a database of the models (under construction in Southampton) with unique model identifier
 - database will be the collection of models from FeynRules, Lanhep as well as manually created ones
 - we should make LHE events traceable generate tag for tools chain
 - organize meeting with CERN representatives
 - convince experimentalists to accept this accord, which would be extremely powerful tool/way for an effective exploration of new physics

Another crucial link

Theorists

We should talk to each other! This is what this workshop for!

- Let understand complementary of our tools and join efforts
 - validate models
 - work on common papers
- Talk openly about current problems and think about the way of their effective solution
- One model is validated we could share our efforts on working challenging physics problem using different packages

Few words about CalcHEP

was born as a CompHEP in 1989: MGU-89-63/140

Author(s) Alexander Pukhov

(AB and Neil Christensen have joined the project in 2009)

http://theory.npi.msu.su/~pukhov/calchep.html

• Idea

The effective study of HEP phenomenology passing at high level of automation from your favorite model to physical observables such as decay width, branching ratios, cross sections kinematic distributions, ...

Features/Limitations of the CalcHEP

- Can evaluate any decay and scattering processes within any (user defined) model!
- Tree-level processes
- Squared Matrix Element calculation

no spin information for outgoing particles – spin averaged amplitude

 Limit on number of external legs (involved particles) and number of diagrams: official limit – 8, unofficial – none,limit is set from the practical point of view: 2 → 6 (1→7) set the essential time/memory limit number of diagrams ~ 500 set the disk space and the time limit

http://theory.npi.msu.su/~pukhov/calchep.html

CalcHEP - a package for calculation of Feynman diagrams and integration over multi-particle phase space.

Authors - Alexander Pukhov, Alexander Belyaev, Neil Christensen

The main idea in CalcHEP was to enable one to go directly from the Lagrangian to the cross sections and distributions effectively, with the high level of automation. The package can be compiled on any Unix platform.

General information
 Main facilities, Old Versions, Acknowledgments News&Bugs

Manual <u>calchep_man_2.3.5(ps.gz)</u> (137 pages, 445KB, March 18, 2005) <u>HEP computer tools (Lecture by Alexander Belyaev)</u> See also: Dan Green, High Pt physics at hadron colliders (Cambrige University Press)

Codes download.

<u>Licence</u> • <u>Installation</u> • <u>References&Contributions</u>
 CalcHEP code for UNIX: • <u>version 2.5.4</u> (July 10, 2009) • <u>version 2.5.5</u> (version for testing)

Models: • <u>MSSM(04.08.2006)</u> • <u>NMSSM</u> • <u>CPVMSSM(04.08.2006)</u> • <u>LeptoQuarks</u>

Universal Extra Dimension Models: • <u>5DSM</u> • <u>6DSM</u> SUSY models for CompHEP • <u>By A.Semenov</u>

Relative packages on Web:

Packages for model generation:

LanHEP
FeynRules

RGE and spectrum calculation: • <u>SuSpect</u> • <u>Isajet</u> • <u>SoftSUSY</u> • <u>SPheno</u> • <u>CPsuperH</u> • <u>NMHDecay</u>

Particle widths in MSSM:

<u>SDECAY</u>
<u>HDECAY</u>

Parton showers: • <u>PYTHIA</u>

Email contact: calchep@googlegroups.com

Quick start: practical notes on the installation

- Download code, read manual and compile http://theory.npi.msu.su/~pukhov/calchep.html
 - tar -zxvf calchep_2.x.x.tgz
 - cd calchep_2.x.x
 - make
 - the currrent version is 2.*x.x* = 2.5.4
- Create work directory
 - From calchep_2.x.x directory:
 - ./mkUsrDir ../calc_work
- Supported operating system
 - Linux, IRIX, IRIX64, HP-UX, OSF1, SunOS, Darwin, CYGWIN (see getFlags file)

Starting CalcHEP

• cd ../calc_work

 Files: bin -> /calchep_2.x.x/bin calchep calchep_batch calchep.ini models/ results/ tmp/

Start: ./calchep

Starting CalcHEP

F1-Help F2-Man F5-Switches F6-Results F9-Ref F10-Quit

CalcHEP menu structure: symbolic part

Alexander Belyaev

NEX

CalcHEP menu structure: symbolic part

Alexander Belyaev

NEX

Model Structure

Parameters Particles Constraints Vertices

≻ ⊙ CalcHEP/symb

Model: Standard Model

Abstract

CalcHEP package is created for calculation of decay and high energy collision processes of elementary particles in the lowest order (tree) approximation. The main idea put into the CalcHEP was to make available passing from the lagrangian to the final distributions effectively with the high level of automatization.

Use F2 key to get information about interface facilities and F1 - as online help.

00

X

F1-Help F2-Man F5-Switches F6-Results F9-Ref F10-Quit

Alexander Belyaev

Particles: prtclxx.mdl (spins 0,1/2,1,3/2,2)

🖂 💽 CalcHEP/sym	ıb				at a second					e e e
*		anto Patri			Partic	cles				
Clr-Del-Size	-Read	l–Err	·Mes							
Full name	IA	IA+	l number	12*spi	nl mass	lwidth	lcolo	rlau	xl>LaTex(A)	<l>LaTeX(A+) <</l>
gluon	IG	IG	121	12	10	10	18	IG	lg	lg
photon	IA	IA	122	12	10	10	11	IG	l\gamma	l\gamma
Z-boson	ΙZ	IZ	123	12	IMZ	lωZ	11	IG	IZ	IZ
W-boson	1W+	IW-	124	12	I MW	lωW	11	IG	W^+	IW^-
Higgs	Ιh	Ιh	125	10	IMh	l!wh	11	1	lh	lh
electron	le	IE	111	11	10	10	11	1	le^-	le^+
e-neutrino	Ine	INe	112	11	10	10	11	IL	l \nu_e	l\bar{\nu}_e
muon	lm	IM	113	11	l Mm	10	11		l\mu^-	l\mu^+
m-neutrino	lnm	I Nm	114	11	10	10	11	IL	l\nu_\mu	\bar{\nu}_\mu
tau-lepton	11	IL	115	11	IM1	10	11		\tau^-	\tau^-
t-neutrino	Inl	IN1	116	11	10	10	11	IL	l\nu_\tau	\bar{\nu}_\tau
d-quark	١d	ID	11	11	10	10	13		ld	l \bar{d}
u-quark	lu	10	12	11	10	10	13		lu	l\bar{u}
s-quark	ls	15	13	11	lMs	10	13	1	ls	\bar{s}
c-quark	lc	IC	14	11	IMc	10	13	1	lc	\bar{c}
b-quark	lb	IB	15	11	IMb	10	13	1	lb	l\bar{b}
t-quark	lt	IT	16	11	lMt	lwt	13	1	lt	\bar{t}
		1100	10							
LF1_F2_Xgoto_	fgoto	>−Fir	nd-Write-							

Particles: prtclxx.mdl

🖂 💽 CalcHEP/sym	b									e e e
*		Santon Hazz	Bart III		Partic	cles				
_[Clr-Del-Size-	Read	l–Err	Mes							
Full name	IA	IA+	l number	12*spi	nl mass.	lwidth	lcolo	orlau	xl>LaTex(A)	<l>LaTeX(A+) <</l>
gluon	IG	IG	121	12	10	10	18	IG	lg	lg
photon	IA	IA	122	12	10	10	11	IG	l\gamma	l\gamma
Z-boson	IZ	ΙZ	123	12	IMZ	lωZ	11	IG	IZ	IZ
W-boson	W+	IW-	124	12	I MW	l wlu	11	IG	W^+	W^-
Higgs	1h	Ιh	125	10	1 Mh	!wh	11	1	lh	lh
electron	le	IE	111	11	10	10	11	1	le^-	le^+
e-neutrino	Ine	INe	112	11	10	10	11	IL	l \nu_e	l\bar{\nu}_e
muon	lm	IM	113	11	l Mm	10	11	1	l\mu^-	l\mu^+
m-neutrino	lnm	l Nm	114	11	10	10	11	IL	l\nu_\mu	\bar{\nu}_\mu
tau-lepton	11	IL	115	11	IMl	10	11	1	\tau^-	\tau^-
t-neutrino	Inl	IN1	116	11	10	10	11	IL	l\nu_\tau	\bar{\nu}_\tau
d-quark	١d	ID	11	11	10	10	13	1	ld	l\bar{d}
u-quark	lu	10	12	11	10	10	13	1	lu	l\bar{u}
s-quark	ls	15	13	11	lMs	10	13	1	ls	\bar{s}
c-quark	lc	IC	14	11	IMc	10	13	1	lc	\bar{c}
b-quark	lb	IB	15	11	IMb	10	13	1	lb	\bar{b}
t-quark	lt	IT	16	11	lMt	lwt	13	1	lt	\bar{t}
			_							
				Hiaa	s bosoi	n widtł	וויע ו	be o	calculated	`on the fly`
41-F2-Xgoto-	goto	o—Fir	nd-Write-							

Independent parameters: varsxx.mdl

🖂 💽 Cal	cHEP/symb		•	×
	ana	Parameters	1	
Clr-De	1—Size—Read—Ern	rMes	199	
Name	Value	I> Comment		
a <mark>lfEM</mark>	Z 0.0078180608	IMS-BAR electromagnetic alpha(MZ)		
alfSM	ZI0.1172	ISrtong alpha(MZ) for running mass calculation		
Q	1100	Iscale for running mass calculation		
GG	11.238	IRunning Strong coupling. The given value doesn'	t matt	er.
SM	10.481	IMS-BAR sine of the electroweak mixing angle		
s12	10.221	Parameter of C-K-M matrix (PDG96)		
s23	10.041	Parameter of C-K-M matrix (PDG96)		
s13	10.0035	lParameter of C-K-M matrix (PDG96)		
Mm	10.1057	lmuon mass		
M1	11.777	ltau-lepton mass		
McMc	11.2	IMc(Mc)		
Ms	10	ls-quark mass (pole mass, PDG96)		
MbMb	14.25	IMb(Mb)		
Mtp	1175	lt-quark pole mass		
MZ	191.187	IZ-boson mass		
Mh	1120	lhiggs mass		
wt	11.59	lt-quark width (tree level 1->2x)		
ωZ	12.49444	IZ-boson width (tree level 1->2x)		
ωW	12.08895	IW-boson width (tree level 1->2x)		

F1-F2-Xgoto-Ygoto-Find-Write-

Dependent parameters(constraints): funcxx.mdl

<u>بر</u>	CalcHEP/symb		••	×
	Constraints	6 () · · · · · · · · · · · · · · · · · ·	9.	
Clr-	-Del-Size-Read-ErrMes			
Nan	ne I> Expression	<	2	
EE	lsqrt(16*atan(1.)*alfEMZ)	% electromagnetic constant	ŝ.	
CM	lsqrt(1-SW^ 2)	% cos of the Weinberg angle	84 10	
MW	IMZ*CW	% W-boson mass	8	
c12	lsqrt(1-s12^2)	% parameter of C-K-M matrix		
c23	lsqrt(1-s23^2)	% parameter of C-K-M matrix	_	
c13	lsqrt(1-s13^2)	% parameter of C-K-M matrix		
Vud	lc12*c13	% C-K-M matrix element		
Vus	ls12*c13	% C-K-M matrix element		
Vub	ls13	% C-K-M matrix element		
Vcd	l-s12*c23-c12*s23*s13	% C-K-M matrix element		
Vcs	lc12*c23-s12*s23*s13	% C-K-M matrix element		
Vcb	ls23*c13	% C-K-M matrix element		
Vtd	ls12*s23-c12*c23*s13	% C-K-M matrix element		
Vts	I-c12*s23-s12*c23*s13	% C-K-M matrix element		
Vtb	lc23*c13	% C-K-M matrix element		
qcd)k linitQCD(alfSMZ,McMc,MbMb,Mtp)			
Mb	lMbEff(Q)*one(qcd0k)			
Mt	lMtEff(Q)*one(qcd0k)			
Mc	lMcEff(Q)*one(qcd0k)			
LF1_F	2-Xgoto-Ygoto-Find-Write	71		

Dependent parameters(constraints): funcxx.mdl

MSSM case

× •	CalcHEP/symb
*	Constraints
Clr-Del	-Size-Read-ErrMes
Name	<pre>> Expression</pre>
smOk	saveSM(MbMb,Mtp,SW,alfSMZ,alfEMZ,MZ,Ml)*saveSLHA(1)
mssmOk	suspectEwsbMSSMc(smOk,tb,MG1,MG2,MG3,Am,A1,At,Ab,MH3,mu,M12,M13,Mr2,Mr3,Mq2,Mq
%mssmOk	lisajetEwsbMSSMc(smOk,tb,MG1,MG2,MG3,Am,Al,At,Ab,MH3,mu,M12,M13,Mr2,Mr3,Mq2,Mq3
%mssmOk	softSusyEwsbMSSMc(smOk,tb,MG1,MG2,MG3,Am,A1,At,Ab,MH3,mu,M12,M13,Mr2,Mr3,Mq2,M
%mssmOk	sphenoEwsbMSSMc(smOk,tb,MG1,MG2,MG3,Am,Al,At,Ab,MH3,mu,M12,M13,Mr2,Mr3,Mq2,Mq3
*drho	deltarho(mssmOk)
*gmuon	gmuon(mssmOk)
*bsgnlo	bsgnlo(mssmOk)
*bsmumu	(bsmumu (mssmOk)
*LEPlim	(masslimits(mssmOk)
Mb	MbEff(Q)*one(smOk)
Mt	MtEff(Q)*one(smOk)
*SC	<pre> sqrt(alphaQCD(Q)/12.566371)*one(smOk)</pre>
Mh	Mh(mssmOk)
MHH	MHH (mssmOk)
MHC	MHc(mssmOk)
alpha	alpha(mssmOk)
MNE1	MNE1 (mssmOk)
MNE2	MNE2(mssmOk)
MNE3	MNE3(mssmOk)
MNE4	MNE4 (mssmOk)
MC1	MC1 (mssmOk)
MC2	MC2 (mssmOk)
MSG	MSG(mssmOk)
Mana	IMSno (meemOk)

NEXT

Feynman rules: lgrngxx.mdl

> CalcHEP/symb

Z.	u Kalukaras	55 1000	0204252	111	Vertices	
Clr-	Del-Si	ze–Rea	d-Errb	les —		
A1	A2	A3	A4	>	Factor	<pre>< > Lorentz part</pre>
h	W+	W-	Ĩ	EE*MW,	/ SN	m2.m3
h	Z	Z	10	EE/ (SI	N*CN^ 2)*MW	m2.m3
h	h	h	3	[-(3/2])*EE*Mh^ 2/(MW*SW)	1
h	h	h	h	(-3/4])*(EE*Mh/(MW*SW))^ 2	1
h	h	Z	Z	(1/2))*(EE/(SW*CW))^ 2	m3.m4
h	h	W+	W-	(1/2))*(EE/SW)^ 2	m3.m4
М	m	h		-EE*M	m/(2*MW*SW)	1
L	11	h	1	-EE*M	1 /(2*MW*SW)]1
С	C	h	1	-EE*Me	c/(2*MW*SW)] 1
S	s	h		-EE *M:	s/(2*MW*SW)	1
В	b	h	3	-EE * M	b/(2*MW*SW)	1
Т	t	h	8	-EE*M	t /(2*MW*SW)]1
Е	e	A		-EE		G(m3)
М	m	A	ji -	-EE		G(m3)
L	11	A		-EE		G(m3)
Ne	e	W+	1	EE/(2	*Sqrt2*SW)	G(m3)*(1-G5)
Mm	m	W+	Ĩ	EE/(2	*Sqrt2*SW)	G(m3)*(1-G5)
Nl	1	W+		EE/(2	*Sqrt2*SW)	G(m3)*(1-G5)
Е	ne	W-	3	EE/(2	*Sqrt2*SW)	G(m3)*(1-G5)
M	rm	W-		EE/(2	*Sqrt2*SW)	G(m3)*(1-G5)
L	nl	W-		EE/(2	*Sqrt2*SW)	G(m3)*(1-G5)
F1-F	'2-Xgot	o-Ygot	o-Fina	l-Write-		

Principle KEYS for CalcHEP's GUI

Enter menu selection (forward) Exit menu selection (back) Help! (details on the menu choice)

<u>بر</u>	CalcHEP/symb	Standard Model	۲	٢	×
	Process:	p,p -> W,b,B			
472 0	diagrams diagrams	Feynman diagrams in 24 subprocesses are constructed.	grams		

NN Subprocess	Del F	lest
11 u,D -> W+,b,B	1 01	15
21 u,S -> W+,b,B	1 01	16
31 u,B -> W+,b,B	1 01	26
41 U.d -> Wb.B	1 01	15
51 U.s -> W-,b,B	1 01	16
61 U,b -> W-,b,B	1 01	26
71 d,U -> W-,b,B	1 01	15
81 d,C -> W-,b,B	1 01	16
91 D.u -> W+,b,B	1 01	15
10 D,c -> W+,b,B	1 01	16
11 s,U -> W-,b,B	I I	16
		-PgDr

F1-Help F2-Man F3-Model F5-Switches F6-Results F7-Del F8-UnDel F9-Ref F10-Quit

🛪 💿 CalcHi	EP/symb								•	•
Мо	del:	Standard Model								
Proc	ess:	p,p -> ₩,b,B						-		
'2 dia dia	agrams agrams	Feynman diagrams in 24 subprocesses are deleted.	are constructed.	۷i	.ew squ	iared	diagr	ams		
08 dia	agrams	Squared diagrams in 24 subprocesses	are constructed.							
dia dia	agrams agrams	are calculated.								
dia dia	agrams agrams	are deleted. are calculated.		0.1	0.1	D				
dia dia NN	agrams agrams Su	are deleted. are calculated. ubprocess		Del	Calo	: Re	st			
dia dia NN	agrams agrams Su	are deleted. are calculated. 		Del	Calc	: Re 01	st 120			
dia dia NN <1 2	agrams agrams Su 1 u.D [.] 21 u.S	are deleted. are calculated. .bprocess ->W+.b.B ->W+.b.B		Del I	Calc 01 01	- Re 01 01	st 120 136			
dia dia NN (1 2 3	agrams agrams Su 1 u,D 21 u,S 31 u,S	are deleted. are calculated. .bprocess ->W+,b,B ->W+,b,B ->W+,b,B		Del I I	Calc 01 01 01	C Re	st 120 136 351			
dia dia NN 1 2 3 4	agrams agrams <mark>Subarans</mark> 1 u,D- 21 u,S- 31 u,B- 11 U,d-	are deleted. are calculated. 		Del I I	Calc 01 01 01 01	C Re	st 120 136 351 120			
dia dia NN 1 2 3 4 5	agrams agrams Su 1 u,D 21 u,S 31 u,B 31 u,B 31 U,d 51 U,s	are deleted. are calculated. .>W+.b.B .>W+.b.B .>W+.b.B .>Wb.B >Wb.B		Del I I I I	Calc 01 01 01 01 01 01	C Re	st 120 136 351 120 136			
dia dia NN (1 2 3 4 5 6	agrams agrams Su 1 u,D 1 u,S 1 u,S 1 u,B 1 U,d 5 U,s 5 U,s	are deleted. are calculated. 		Del I I I I	Calc 01 01 01 01 01 01 01	C Re	st 120 136 351 120 136 351			
dia dia NN ✓ 1 2 3 4 5 6 7	agrams agrams Su 1 u,D 1 u,S 1 u,B 1 U,d 1 U,d 1 U,d 1 U,d 1 U,d 1 U,s 1 U,b 1 U,b	are deleted. are calculated. 		Del I I I I I	Calc 01 01 01 01 01 01 01 01	C Re	st 120 136 351 120 136 351 120			
dia dia NN ≪ 1 2 3 4 5 6 7 8	agrams agrams Su 1 u,D 1 u,S 1 u,B 1 U,d 1 U,d 1 U,d 1 U,s 1 U,s 1 U,s 1 U,s 1 U,s 1 U,s 1 U,s	are deleted. are calculated.		De1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Calc 01 01 01 01 01 01 01 01	Re 01 01 01 01 01 01 01 01	st 120 136 351 120 136 351 120 136			
dia dia NN ▲ 1 2 3 4 5 6 7 8 9	agrams agrams Su 21 u, D 21 u, S 21 u, B 31 u, B 31 u, B 31 u, B 31 u, C 31 u, c 31 d, C 31 d, C	are deleted. are calculated. 		Del 	Calc 01 01 01 01 01 01 01 01 01	Re 01 01 01 01 01 01 01 01 01	st 120 136 351 120 136 351 120 136 120			

F1-Help F2-Man F3-Model F4-Diagrams F5-Switches F6-Results F9-Ref F10-Quit

• ،	CalcHEP/symb			
	Model:	Standard Model		
	Process:	p,p -> ₩,b,B		
472 0	diagrams diagrams	Feynman diagrams in 24 subprocesses are are deleted.	e constructed.	View squared diagrams Symbolic calculations Make&Launch n_calchep Make n_calchep
5208 0 0	diagrams diagrams diagrams	in 24 subprocesses are are deleted. are calculated.	e constructed.	KEDULE program
F	-Help F2-	1an F3-Model F4-Diagrams	5-Switches F6-	Results F9-Ref F10-Quit

F1-Help F2-Man F3-Model F4-Diagrams F5-Switches F6-Results F9-Ref F10-Quit

"BSM phenomenology at the LHC using Monte Carlo tools"

×

Total cross section and distributions

Subprocess IN state Model parameters Constraints QCD coupling Breit-Wigner Cuts Phase space mapping Vegas Generate events (sub)Process: u. D -> W+. b. B Monte Carlo session: 2(continue) #IT Cross section [pb] 9.5931E+00 6 7 9.5686E+00 8 9.5669E+00 9 9.6892E+00 10 9.6267E+00 1 9.7757E+00 clear statistics. 2 9.6557E+00 3 9.7464E+00 4 9.6945E+00 5 9.7032E+00 $\langle \rangle$ 9.7095E+00

Alexander Belyaev

Accessing your results

- results are stored in "results" directory
- output files:
 - n_calchep numerical module
 - prt_nn protocol
 - distr_nn_mm summed distributions
 - distr_nn individual distribution
 - events_nn.txt events file
 - list_prc.txt list of processes
 - qnumbers qnumbers PYTHIA input with new prt definitions
 - session.dat current session status format is similar to prt_nn one
- for every new process the "results" directory is offered to be renamed or removed

protocol prt_nn

```
CalcHEP kinematics module
The session parameters:
\#Subprocess 1 ( u, D -> W+, b, B )
#Session number 1
#Initial state inP1=7.000000E+03 inP2=7.000000E+03
Polarizations= { 0.000000E+00 0.000000E+00 }
 StrFun1="PDT:cteq6m(proton)" 2212
 StrFun2="PDT:cteq6m(proton)" 2212
#Physical Parameters
   alfEMZ = 7.818060999999999E-03
   alfSMZ = 1.17200000000000E-01
#Cuts
*** Table ***
Cuts
 Parameter |> Min bound <|> Max bound <|
T(b)
            120
             120
T(B)
#Regularization
*** Table ***
Regularization
             |> Mass <|> Width <| Power|
Momentum
45
             MZ
                                2
                       ΙwΖ
                                 2
45
             | Mh
                       lwh
#END
______________________________
      Cross section [pb] Error % nCall chi**2
#IT
                    3.30E+01 20000
 1
     2.0373E+00
                    2.86E+01
  2
       8.6164E+00
                                     20000
```

Alexander Belyaev

Few words about LanHEP package

Andrei Semenov: V3.0, arXiv:0805.0555 http://theory.sinp.msu.ru/~semenov/lanhep.html The program for Feynman rules generation in momentum space QCD as an example

 $\begin{array}{ll} \textbf{Gauge term} & L_{YM} = -\frac{1}{4} F^{a\mu\nu} F^a_{\mu\nu}, \quad F^a_{\mu\nu} = \partial_\mu G^a_\nu - \partial_\nu G^a_\mu - g_s f^{abc} G^b_\mu G^c_\nu \\ \textbf{Quark kinetic term} & L_F = \bar{q}_i \gamma^\mu \partial_\mu q_i + g_s \lambda^a_{ij} \bar{q}_i \gamma^\mu q_j G^c_\mu, \\ \textbf{GF term and FP ghost term} & \mathcal{L}_{GF} = -\frac{1}{2} (\partial_\mu G^\mu_a)^2 + i g_s f^{abc} \bar{c}^a G^b_\mu \partial^\mu c^c, \end{array}$

```
model QCD/2.
parameter gg=1.117:'Strong coupling'.
spinor q/Q:(quark, mass mq=0.01, color c3).
vector G/G:(gluon, color c8, gauge).
let F^mu^nu^a = deriv^nu*G^mu^a - deriv^mu*G^nu^a -
            gg*f_SU3^a^b^c*G^mu^b*G^nu^c.
lterm -F**2/4-(deriv*G)**2/2.
lterm Q*(i*gamma*deriv+mq)*q.
lterm i*gg*f_SU3*ccghost(G)*G*deriv*ghost(G).
lterm gg*Q*gamma*lambda*G*q.
```

Few words about LanHEP package

Andrei Semenov: V3.0, arXiv:0805.0555 http://theory.sinp.msu.ru/~semenov/lanhep.html This is the program for Feynman rules generation in momentum space QCD as an example

Go as all example Gauge term $L_{YM} = -\frac{1}{4}F^{a\mu\nu}F^a_{\mu\nu}, \quad F^a_{\mu\nu} = \partial_{\mu}G^a_{\nu} - \partial_{\nu}G^a_{\mu} - g_s f^{abc}G^b_{\mu}G^c_{\nu}$ Quark kinetic term $L_F = \bar{q}_i\gamma^{\mu}\partial_{\mu}q_i + g_s\lambda^a_{ij}\bar{q}_i\gamma^{\mu}q_jG^c_{\mu},$ GF term and FP ghost term $\mathcal{L}_{GF} = -\frac{1}{2}(\partial_{\mu}G^{\mu}_a)^2 + ig_s f^{abc}\bar{c}^a G^b_{\mu}\partial^{\mu}c^c,$

QCD Feynman rules generated by LanHEP in LaTeX format

Fie	lds in t	he ver	tex	Variational derivative of Lagrangian by fields
$G_{\mu p}$	$G.C_q$	$G.c_r$		$-gg\cdot p_3^\mu f_{pqr}$
Q_{ap}	q_{bq}	$G_{\mu r}$		$gg\cdot\gamma^{\mu}_{ab}\lambda^{r}_{pq}$
$G_{\mu p}$	$G_{\nu q}$	$G_{\rho r}$		$ggf_{pqr}(p_3^{\nu}g^{\mu\rho} - p_2^{\rho}g^{\mu\nu} - p_3^{\mu}g^{\nu\rho} + p_1^{\rho}g^{\mu\nu} + p_2^{\mu}g^{\nu\rho} - p_1^{\nu}g^{\mu\rho})$
$G_{\mu p}$	$G_{\nu q}$	$G_{\rho r}$	$G_{\sigma s}$	$gg^2(g^{\mu\rho}g^{\nu\sigma}f_{pqt}f_{rst} - g^{\mu\sigma}g^{\nu\rho}f_{pqt}f_{rst} + g^{\mu\nu}g^{\rho\sigma}f_{prt}f_{qst}$
				$+g^{\mu\nu}g^{\rho\sigma}f_{pst}f_{qrt} - g^{\mu\sigma}g^{\nu\rho}f_{prt}f_{qst} - g^{\mu\rho}g^{\nu\sigma}f_{pst}f_{qrt})$

Features of LanHEP

- it reads Lagrangian written in the form close to one used in publications and transforms it into momenta space
- it writes Feynman rules in the form of four tables in CompHEP format as well as tables in LaTeX format
- LanHEP expands expression and combines similar terms user can define the substitution rules, it allows to define multiplets, and their components
- it can check whether the set of introduced vertices satisfies the electric charge conservation law
- many more features: see manual(!) using superpotential formalism, check for BRST invariance, two-component notation for fermions, spins 3/2,2, ...

LanHEP installation

http://theory.sinp.msu.ru/~semenov/lanhep.html tar -zxvf lhepxxx.tar.gz cd lhepxxx make make clean

Running LanHEP

../Ihep stand.mdl
 File sm_tex processed, 0 sec.
 File stand.mdl processed, 1 sec.

Future plans *Effective FR derivation for ExD models recent e-mail from Andrei!*

```
model uedqwd/3.
```

```
parameter ee = 0.3133: 'Electric charge', R=1e-4.
```

```
vector A/A:photon, A1/A1:(photon1, mass Ma1=1000), ....
```

```
scalar s1/s1:(phot51, mass Ma51=1000), ....
```

```
spinor e:(electron, mass me=2000.511),
e11:(electron1, mass me1=1000.0511),
e1r:(electron1, mass me1=1000.0511), ....
```

transform A \rightarrow A*cos(0) + (A1*cos(1) + A2*cos(2))*Sqrt2,

let A5 = (s1*sin(1) + s2*sin(2))*Sqrt2.

ued_5th deriv5->1/R, A->(s1*sin(1) + s2*sin(2))*Sqrt2.

lterm -F*F/4 where F=deriv^mu*A^nu-deriv^nu*A^mu.

CheckHerm.

CheckMasses.

calchep_batch batch_file

calchep_batch batch_file Progress information can be found in the html directory. Simply open the following link in your browser: file:///home/belyaev/proj/intro_to_hep_tools/calc_work_2.5.4/html/index.html

Main Features

batch_file

Batch file

Process library

Runs

- Combines decays
- •Parallelization
- •HTML progress

Model:	Standard Model(CKM=1)
Model change	ed: False
Gauge:	Feynman
Process:	p,p->₩,b,B
Decay:	₩->ll,nn
Composite: Composite: Composite: Composite:	<pre>p=u,U,d,D,s,S,c,C,b,B,G W=W+,W- ll=e,E,m,M,l,L nn=ne,Ne,nm,Nm,nl,Nl</pre>

file:///home/belyaev/proj/intro_to_hep_tools/calc_work_2.5.4/html/index.html

Home Symbolic Results Numerical Results Events Library Process Library Help

Thank you for using CalcHEP! Please cite arXiv:0000.0000

CalcHEP Batch Details

Standard Model(CKM=1)

Done!

Finished Time(hr)

Symbolic	14/14	0.00
σ	1/1	0.03
Events	1/1	0.05

file:///home/belyaev/proj/intro_to_hep_tools/calc_work_2.5.4/html/index.html

Symbolic Sessions

Home Symbolic Results Numerical Results Events Library Process Library Help

Thank you for using CalcHEP! Please cite arXiv:0000.0000

Standard Model(CKM=1)

Processes Lib PID Time(hr)

u,D->W+,b,B ✓ U,d->₩-,b,B ✓ d,U->W-,b,B ✓ D,u->W+,b,B ✓ s,C->W-,b,B ✓ S.c->W+,b,B ✓ c,S->W+,b,B ✓ C.s->W-.b.B ✓ W+->E.ne1 W+->M,nm 1 W+->L,nl 1 W-->e.Ne 1 W-->m,Nm 1 W-->1.N1 1 Widths 1

file:///home/belyaev/proj/intro_to_hep_tools/calc_work_2.5.4/html/index.html

Home Symbolic Results Numerical Results Events Library Process Library Help

Thank you for using CalcHEP! Please cite arXiv:0000.0000

Numerical Sessions

Standard Model(CKM=1)

Done!

Runs σ (fb) Running Finished Time (hr) N events

Single 12350 0/15	15/15	0.14	50000
		0.14	

file:///home/belyaev/proj/intro_to_hep_tools/calc_work_2.5.4/html/index.html Standard Model(CKM=1)

Done!

Home							
Symbolic Posulte	Processes	σ (fb)	PID	Time (hr)	N events	Details	
Symbolic Results	u,D->W+,b,B	10047	27115	0.02	14910/14910	prt_1	session.dat
Numerical Results	U,d->W-,b,B	5636.4	27125	0.01	8364/8364	prt_1	session.dat
Traineriour results	d,U->W-,b,B	5567.9	27129	0.01	8263/8263	prt_1	session.dat
Events Library	D,u->W+,b,B	9850.2	27145	0.02	14618/14618	prt_1	session.dat
Duccess Librows	s,C->W-,b,B	1609.9	27366	0.01	2389/2389	prt_1	session.dat
Process Library	S,c->W+,b,B	1359.9	27370	0.01	2018/2018	prt_1	session.dat
Help	c,S->W+,b,B	1374.5	27563	0.01	2039/2039	prt_1	session.dat
TICIP	C,s->W-,b,B	1614.8	27581	0.01	2396/2396	prt_1	session.dat
	Total	37061			54997/54997		
Thank you for using	Decays	Г (GeV)	PID	Time (hr)	N events	1	Details
CalaLIEDI	W+->E,ne	0.22339	27583	0.01	255000/254999	prt_1	session.dat
Calcher!	W+->M,nm	0.22339	27586	0.01	255000/254999	prt_1	session.dat
Please cite arXiv:0000.0000	W+->L,nl	0.22323	27891	0.01	255000/254999	prt_1	session.dat
	W>e,Ne	0.22339	27893	0.01	255000/254999	prt_1	session.dat
	W>m,Nm	0.22339	27896	0.01	255000/254999	prt_1	session.dat
	W>1,N1	0.22323	27905	0.01	255000/254999	prt_1	session.dat
	Widths		PID	Time (hr)		1	Details
	Widths		28254	0.01			session.dat

NEXT

file:///home/belyaev/proj/intro_to_hep_tools/calc_work_2.5.4/html/index.html Distributions

Home Symbolic Results Numerical Results Events Library Process Library Help

Alexander Belyaev

Thank you for using CalcHEP! Please cite arXiv:0000.0000

Recent applications: B-L extension of SM

Extra U(1)' : Z', heavy long leaving neutrino

(in collaboration with S. Moretti, L. Basso, M.Pruna, C. Shepherd)

Alexander Belyaev

"BSM phenomenology at the LHC using Monte Carlo tools"

arXiv:0812.4313

arXiv:0903.4777

Recent applications: W' 3-lepton signatures from 3-site Higgsless model arXiv:0708.2588 LHC reach for WZ->W' process

Vumber of events/25 GeV

Z' line shape for $e^+e^- \rightarrow W^+W \rightarrow I^+I_{VV}$, $\sqrt{s}=500 \text{ GeV}$

[AB, Chivukula, Christensen, He, Kuang, Pukhov, Qi, Simmons, Zhang '07]

Z' line shape Z' study at ILC: the Z' width can be measured precisely [2.5%], So we will be able to understand which higgsless model takes place!

q arXiv:0907.2662 AB, Chivukula, Christensen, Simmons, Н He, Kurachi, Tanabashi F₁ $\Sigma_1 \Sigma_2$

q

$$SU(2)_L \times SU(2)_H \times U(1)_R$$

q

F,

Recent applications: phenomenology of WalkingTechnicolor models

arXiv:0809.0793

AB, Foadi, Frandsen, Järvinen Pukhov, Sannino

Recent applications: sbottom coannihilation scenario at ILC

If sbottom and neutralino have a small mass split they can account for coannihilation in early Universe through this type of diagrams:

the small mass split leads to very soft b-jets and missing p_{T} .

arXiv:0912.2411 AB, Nomerotski, Lastovicka, Medin Pukhov,

$$e^+e^- \rightarrow e^+e^-b\bar{b}$$

background process

one of 50 diagrams is regularized by non-zero electron mass the minimal $(p_1-p_3)^2$ is non zero and equal to

$$-m_e^2 \frac{(E_1 - E_3)^2}{E_1 E_3}$$

numerical cancellations are of the order of $m_{2}^{4}/E^{4} \sim 10^{-30}$ and one

Ongoing project: Study of long living heavy photons from Little Higgs Model with broken T-parity

In collaboration with Ian Tomalin and Arnaud Gay

2 displaced vertices from 2 heavy photons decay

Ongoing project: Boosted Z-bosons

In collaboration with James Jackson and Claire Shepherd-Themistocleous Benchmark model: model with excited fermions with gauge interactions

Ongoing project: Boosted Z-bosons

In collaboration with James Jackson and Claire Shepherd-Themistocleous Benchmark model: model with excited fermions with gauge interactions

Ongoing project: Boosted Z-bosons

In collaboration with James Jackson and Claire Shepherd-Themistocleous Benchmark model: model with excited fermions with gauge interactions

- Motivated by several promising candidates for New Physics such as
 - SUSY (cascase squark and gluinos decays)
 - Technicolor (W' -> WZ decays)

NEXT

Alexander Belyaev

Study of multiparticle final states should be performed for efficiency estimation

One more remark on why experimentalists should talk more to theorists

- Include polarization effects into production-decay chain
- QCD scale definition (leading diagram)
- polarization for massive particles
- implementation of jet matching algorithm

Final remarks

Advantages of CalcHEP –

easy model implementation, convenient interface, batch mode

- Ready to be used by wide range of HEP community: from model builders to experimentalists!
- Powerful tool which

should not be blindly trusted or blamed !

Summary

- It is very productive workshop, we should keep this tradition
- Important common projects, interesting new results
- we have powerful tools
 - CalcHEP/LanHEP are among them for new physics studies, implementation of new models is easy: MSSM, NMSSM, LHT, UET, Walking Technicolor models have been already implemented (as well as many more!)

Connection to experiment is crucial

- Creating of model database
- Model validation
- Traceable tag for LHE events

• Let do our best to constructively combine our expertise!

