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® The present: current features and limitations
® The future: new challenges and development plans

® Towards a communication platform between theorists and
experimentalists
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The present:
current teatures and limitations




The FeynRules philosophy

® If at the LHC we come to the situation that we have to
discriminate between a plethora of competing models, we
need an efhcient and fast way to simulate all these models.

® We aim to provide the user a framework where new models
can be easily implemented into matrix element generators,
without having to know the technical details of the
generator (conventions, programming language).

® ['rom one FeynRules model many different implementations
can be obtained:

= Try to avoid redoing the same work over and over again.

= Fach generator has its own strengths, and we want to
exploit all of them at once!
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FeynRules - current status

® FeynRules can cope with any 4D Lagrangian, the only
constraints are gauge and Lorentz invariance, and the
field types:

Scalars

!

Dirac and Majorana fermions
Vectors

Spin 2

ghosts

1 1 31

® Higher dimensional operators are not a problem (at least

for FeynRules)!
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FeynRules - current status

® The input requested form the user 1s twofold.
= A FeynRules model file: definition of particles and

parameters in the Lagrangian:

\

/F[1] == {ClassName > q,
SelfConjugate -> False,

Indices -> {Index[Colour]},
Mass -> {MQ, 200},
Width -> {WQ, 5} }

= The Lagrangian of the model:

\

/L =-1/4 FS[G,mu,nu,a] FS[G,mu,nu,a]
+ | gbar.Ga[mu].del[g,mu] - MQ gbar.q
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FeynRules - current status

\

/L = -1/4 FS[G,mu,nu,a] FS[G,mu,nu,a]
+ | gbar.Ga[mu].DC[g,mu] - MQ gbar.q

® FeynRules knows about the gauge groups, c.e., the field
strength tensors and covariant derivatives are
automatically defined.
= |n quantum theories we need to fix the gauge.
Can we also generate the gauge ﬁxing and ghost terms
automatically?

® The user can now ask FeynRules to compute the
Feynman rules:

/ \
FeynmanRules| L |;
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FeynRules - current status

® The Feynman rules can be exported to various matrix
element generators via dedicated interfaces.

® Currently implemented interfaces:

CalcHep/CompHep - Micr'Omegas
FeynArts/FormCalc

MadGraph/MadEvent

Sherpa

Whizard/Omega (beta)

Golem and Herwig will be added in the future.

1831833

® FeynRules then produces a set of files that can be copied
into the matrix element generator and be used 1n the same

way as all the other models («plug ‘n’ play»).
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Available models

® We want to provide the users with a ‘critical mass’ of
models from which new models/extensions of existing
models can be created.

® Currently implemented models:
=» SM
= complete MSSM (+extensions: NMSSM, RPV, ...)
= Universal extra dimensions
= [arge extra dimensions
= Moose models (3-site model) + linear sigma models
= Effective operators

® Missing models: Little Higgs theories, Technicolor,
Leptoquarks, GUT theories ...
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The tuture:
new challenges and development
plans




[ 1mitations

® In principle, every OFT model can be implemented in
FeynRules.
® In practice, this 1s hampered by the fact that
= the Lagrangian must be entered in terms of four-
component spInors.

= the mass matrices must be diagonalized by hand.

= supersymmetric theories are most conveniently written

in terms of superfields.

o FeynRules so far only deals with tree-level obj ects (no
counterterms).

® Most of the matrix element generators have color and/or
Lorentz structures hardcoded, limiting in this way the

number of models that can be implemented.
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General Lorentz structures

® FeynRules can be used to generate the Feynman rules
also for higher dimensional operators and arbitrary gauge

groups.

® Some generators have the Lorentz and color structures
hardcoded, e.g.,
= oceneric couplings in FeynArts.

= HELAS library for MadGraph and Herwig.

® Aim: Use the information available in FeynRules to
extend the library of Lorentz structures of the matrix
element generator.
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FeynArts generic couplings

® For FeynArts, we can write the generic couplings file

directly from FeynRules (Céline Degrande).

® In other words, for each model we can write out the so-

called classes couplings as well as the associated generic

couplingo.

® This will allow to implement any QFT model into
FeynArts.
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Automatic generation of HELAS

routines

® The interface for MadGraph 5 will be rewritten from
scratch, and will output a set of Python files that do not
only contain the information on the couplings, but also on
the Lorentz structures of each vertex.

® A Python code 1s being developed (W. Link, O. Mattelaer)
that will allow to write Fortran HELLAS routines directly
from the FeynRules information.

® The same strategy could be followed also for Herwig
(writing HELLAS routines in C++).
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General Lorentz structures

® At the end, every generator can then in principle handle
higher-dimensional operators:

v CalcHep, Golem, Whizard: Lorentz structures are part
of model definition.

v FeynArts: both generic and classes couplings are
written by FeynRules.

v MadGraph & Herwig: Automatic generation of
HELAS routines form Python module.
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Weyl ftermions & superfields

® Supersymmetric theories are most conveniently written 1n
terms of superfields.

® Supermultiplets contain Weyl spinors as component helds,
rather than four-component spinors.

® As a first step, we have implemented Weyl fermions into

FeynRules
/ N
WI[41] == F[3] == {
{ClassName -> qL, ClassName -> q,
Chirality -> Lett, SelfConjugate -> False,
SelfConjugate -> False, Indices -> {Index[Colour]},

Indices -> {Index[Colour]}}, WeylComponents -> {ql,, qRbar}},

N
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Weyl ftermions & superfields

® FeynRules then replaces the Weyl fermions by there four-

component expression,

gr — 1. q g = i
C_YR:PRQ QL:PRQC

® After this replacement, the Lagrangian (and the Feynman
rules) are again expressed in terms of four-component
spinors, as required by the matrix element generators.

® We tested this new feature already by rewriting the
MSSM completely in terms of Weyl fermions.
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Weyl ftermions & superfields

® A similar approach can be taken also for superfields:
= chiral superfields:

® = (¢, x, F)
= ocauge superhields:
V =(A,\ D)
y, ] J \.
§— / 1*2d2002001 & L=08,010"0 +ix'a"d,x + F'F
4 12 ’ 9)4Y, 1 0°W
+/d rd“0W(®) + h.c. _8—¢F_§6¢2X'X+h'c'
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Weyl ftermions & superfields

& L = L
5 — / A 2?0260 " & L= 8,010 +ixT5 0, + FIF
4 12 ) 5)4Y% 1 0°W
+/d rd20W(®) + h.c. OV b 3O X x b
N - N 7/

® The equations of motion for the IF and D terms are trivial,
and can be solved ‘easily’ in Mathematica, allowing to
reduce the superspace action completely to a Lagrangian
in terms of physical component fields,

A \

1 2
L = 8¢T5’“(b+zx ot Oy — | 5’;/2\/

X - x + h.c.

O
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Mass eigenstates

® At present, the mass matrices must be diagonalized by
hand, and the relation between the gauge and mass
eigenstates 1s part of the definition of the model.

® We can extract the mass matrix from the Lagrangian and
diagonalize it numerically.

® Should this be done inside or outside Mathematica/
FeynRules?

MassDhag j

[ FeynRules #

ME |
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Let’s get loopy...

O FeynRules computes only tree-level Feynman rules.

® This is of course sutficient for all tree-level matrix element
generators.

® Ior loop-level generators (¢f. FeynArts, Golem) we also
need the UV counterterms.

= Which scheme to use?

= How to deal with mixing of particles?
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Connecting the high and the low

scale

® From the counterterms we can determine the & and o
functions, ce., the RG evolution,

L =

® Plan: have a tool (not in Mathematica) that sets up 1-loop
RGE’s, and generates the low-scale inputs form the high-
scale inputs, at least for some classes of models.

= How do deal ethiciently with the boudary conditions at
different scales?

= How to deal with the decoupling of heavy particles
(DRbar counterterms are mass independent)?
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From theory to phenomenology
[ Model ]




From theory to phenomenology
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From theory to phenomenology
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From theory to phenomenology
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From theory to phenomenology
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From theory to phenomenology
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From theory to phenomenology
[ Model ) """""""""" S e e e E




Towards a communication platform
between theorists and experimentalists
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A Roadmap tor BSM @ the LHC

Idea
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A Roadmap tor BSM @ the LHC
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A Roadmap tor BSM @ the LHC
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A Roadmap tor BSM @ the LHC

® Workload 1s tripled, due to disconnected fields of expertise.
® Error-prone, painful validation at each step.

® Proliferation of private MC's/Pythia tunings:

m No clear documentation.
= Not traceable.

® We need more than just papers to communicate between
theorists and experimentalists!
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A Roadmap tor BSM @ the LHC

® MC's are already integrated into the experimental
framework:

= 1o re-validation required!

® All the information about the physics content of the
implementation 1s centered where 1t belongs, 1n the
Lagrangian

= full traceability of all event samples
= possibility to create web database for BSM models
® Compatibility with various MC'’s

= Unseen validation power
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The Les Houches validation scheme
* Documentation:

References to the original papers,operating system, ...
* Basic theory sanity checks:

Hermiticity, gauge invariance, 2-to-2 cross section,...
* Testing one ME generator:

All possible 2-to-2 cross sections, 1n different gauges, HE
behavior, ...

* Testing several ME generators

Process MG-FR MG-8T CH-FR CH-8T SH-FR EH-8T WO-FR WO-8T Comparison
002x 10~ 2.85011x10"° 2.85%501x10°° 2.8501x10°7 2.85007x10"° 2 : 501 ’ 10°° 6§ = 0.00394796 %

« 0JVU -V &L «QJIVLD - &.02V20

&edIILIX IV &£.22520X 10 LDl X1V & 22230 X 2NV

&L.VUOVDI O X AV £..V0VU0J X 1V LVOLL X AV
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Conclusion

® [f we need to decide between many competing BSM models
at the LHC, a new way of communicating between theorists
and experimentalists 1s needed.

® In such a framework theorists and experimentalists can meet
on a common platform’, that offers a flexible environment
how a model can be developed and extended and its

phenomenology studied.

® This framework does not only allow the full traceability and
reproducibility of all event samples, but also the validation of
the models to an unprecedented level.
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