

An SVM-Domain Linker Prediction Trained with Optimized Features Selected by Random Forest and Stepwise Selection

<u>Teppei Ebina¹</u>, Hiroyuki Toh² and Yutaka Kuroda¹

1 Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology. 2 Medical Institute of Bioregulation, Kyushu University.

Introduction

prediction method & improve their prediction performances.

Results

Importance score of the feature candidates

Methods

Target: Domain linker

- Loop regions between two structural domains
- Easier to predict than domain regions

Structural domain

③: Hydrophobic cluster

< 5.0Å

Domains having no inter-domain interactions

Predictor construction

Improvement by feature selections

Perform 100 times	 Random Forest Classification Features with Z-Score of MDGI > 2.0 were selected as optimal feature candidates. 47 Optimal Feature Candidates
Repeat until no improvement was observed by eliminating features	<u>Feature Selection – 2nd Step</u> Backward Selection
SVM Assess the performance	In each round of this selection, a candidate that most worsened the performances was eliminated from the feature set.

Computational Time of the Feature Selection

	Runing Time (hour)	Feature Total	hours/Feature
Random Forest	20	2870	0.007
Backward Selection	100	47	2.128

Conclusion

- The combination of random forest & backward selection efficiently determined the optimal features.
- The prediction performances of our predictor improved by over 15% by the feature selection.